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CHAPTER i

INTRODUCTION

This is the final report on the study of navigation systems for the Dual-

Mode Lunar Roving Vehicle (DLRV). The study was initiated by the National

Aeronautics and Space Administration, and was performed at the University of

Tennessee over a period of seven months.

i-i Project Objectives

NASA's Lunar Roving Vehicle (LRV) program is a logical step in man's explo-

ration of space and the earth's celestial neighbors. The historic Apollo adven-

tures have dramatically put man's footprints on the moon. Now NASA's Apollo

Application program will assure that the technological advancements which made

possible this epic voyage will be fully exploited. One important part of the

Apollo Application program is the LRV. This vehicle is an important tool that

will help to maximize one of the returns in our investment in space, namely, new

information about lunar environment.

The DLRV, an advanced type of LRV, will have dual mode capability so that

it can be operated by astronauts aboard the vehicle or by earth-based remote con-

trollers. The objectives that have been set for the DLRV demand that the vehicle

be equipped with an accurate and reliable navigation system. The selection of

this navigation system is the subject of the investigation described in this

report.

1-2. System Requirements

The requirements for the navigation system to be used on the DLRV are set

by the mission planned for the vehicle. At the beginning, the vehicle will leave

the Lunar Excursion Module (LEM) and be driven around by astronauts in the manned

mode for a short period within I0 kilometers of the LEM. After astronauts return

to the earth the vehicle will depart from the LEM for a long distance trip across

the lunar surface in the remote-controlled mode. During this journey, the DLRV



will makemanystops to collect scientifically important lunar samples by auto-
matic means. At the end of this translunar trip, it will be met by astronauts

who will unload the samples from the vehicle for scientific analysis.

Clearly, it is necessary to know the position of the DLRVif the astronauts

must return to the LEMin the mannedmodeand if the astronauts are going to meet

the vehicle at the end of its translunar trip. The navigation system will also

support the scientific experiments performed during the lunar sorties. It will

be possible to use navigation data to record, for any collected sample, the exact
location where it was obtained. The reduction of the information generated by

the navigation system will also add a new and valuable technique for accurate

mapping of the lunar surface. As a matter of fact, scientists planning the experi-

ments that will be carried on the LRVdesire a precise measure of the vehicle

position.

A list of considerations for the DLRVnavigation system is shownbelow:

i. A maximumtravel distance of 1,000 km during a

one year period

2. A maximummannedspeed of 15 km per hour and a

maximumunmannedspeed of 2 km per hour

3. A desired navigation accuracy of i0 meters in the
horizontal directions and i meter in altitude with

respect to a given lunar mapor a given lunar land-
mark.

4. The knowledge of DLRVat all times (implying a

continuous navigation.)

5. A maximumweight of 7 kg.

6. Reliability consideration

7. Volume consideration
8. Humanfactor consideration

9. Power consideration

To meet the continuous navigation requirement, a dead reckoning navigator

must be employed. However, on the long DLRVmission, the error accumulated with

time when a dead reckoning navigator is used would be prohibitively large. There-

fore some type of position fixing schemewill be needed to periodically update

the position provided by the dead reckoning navigator. As a result, the DLRV

navigation system will consist of both a dead reckoning and a position fix navi-

gator.



1-3. The Report

Although navigation is an old art, there still is need for the development

of new concepts and better techniques to suit various, particular applications.

This report contains manyconsiderations, new concepts, and attractive techniques

which have not appeared elsewhere. These newdevelopments are scattered in Chap-

ters 4 to 7 of the report.

A preliminary review of possible navigation components for the DLRVis given

in Chapter 2. Componentswhich are obviously unsuitable for DLRVapplication

will be eliminated from study.

The formulation of two sets of navigation equations using lunar coordinates

are contained in Chapter 3. Equations needed for the study of navigation errors

caused by hardware imperfection are provided for each set.

Chapter 4 considers the usefulness of a pure odometer navigation system

for measuring not only the distance traveled by the LRVbut also the LRVheading.

Chapter 5 discusses the problems associated with the mechanization of dead

reckoning navigation systems using various kinds of sensors. Several newways

of using the componentsare suggested.

Chapter 6 presents six position fix schemes, two of them makeuse of celes-

tial bodies with known ephemerides and the others require the use of a lunar

satellite. Sensitivity analyses and computation equations for all schemesare

provided.

Chapter 7 suggests several newmethods of using landmarks for LRVnavigation.

Only angle measurementsare required in these methods. The attractiveness of the
methods is discussed in detail.

Comparisons of various types of navigation systems are given in Chapter 8.

For the purpose of comparison, a base-line system is proposed as a comparison
standard.

A summaryof this report and a list of recommendedfuture activities are

included in Chapter 9.

The final attachments to the repart include a list of references and eight

appendices. The appendices contain all the lengthy derivations of the equations
shownin the text.
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1-4. Coordinate Systems

Three coordinate systems will be used in this report. They and their respec-
tive unit vectors are defined in Table i-i and shownin Fig. I-i.



Coordinate System

SI, vehicle centered and
vehicle oriented

$2, vehicle centered and

lunar coordinate
oriented

$3, lunar centered and

inertially oriented

Origin

Vehicle

Vehicle

Lunar

Center

Set of Unit Vectors

^

iI - Along vehicle's forward

axis

^

Jl - Completing the right

hand triad

^

k I - Along vehicle's right-

ward axis

^

i2 - Eastward along constant

latitude line

^

J2 - Northward along lunar

meridian

^

k 2 - Completing the right-

hand triad (radially

outward)

^

i3 - Passing through the

lunar equator

^

J3 - Passing through the

lunar equator

^

k 3 - Passing through the

lunar north pole

Coordinate Systems

Table i-i



$2 and $3

±3

I
I
I
I

I
/

/

2

----_J3

S1

Jl

k I

Coordinate Systems and Their Unit Vectors

Fig. i-i



CHAPTER2

NAVIGATIONSYSTEMCOMPONENTS

2-1. Navigation Components

Hardware componentssuch as gyros, radars, accelerometers, and computers

are the building blocks that makeup navigation systems. The job of the sys-

tem designer is to use these building blocks to organize and design a system

of blocks that is the best solution to the problem at hand. A large collection

of building blocks is available for consideration by the designer of a naviga-

tion system. What follows is a listing of someof these components. The hard-

ware componentsare classified according to the function that they perform.

Table II-i also lists several of these componentsand gives somepertinent
data about them. The information in this table is from reference number 4.

2-2. Velocity Determination

Doppler Radar

The doppler radar is a single beam device that would be mounted on the

LRV so that a radar beam would be transmitted forward along the vehicle longi-

tudinal axis. The return signal reflected from stationary lunar objects would

be received and compared with the transmitted signal. The doppler frequency

shift between the transmitted and received signals would be proportional to

the component of LRV velocity along the vehicle longitudinal axis. Other com-

ponents of the velocity would be approximated as zero.

The doppler radar appears unsuited to the LRV application for two reasons.

First, the error in velocity measurement for the doppler radar is independent

of the vehicle speed. For the slow speeds expected for the unmanned DLRV this

characteristic tends to cause measurement errors that are a large percent of the

vehicle speed. Second, the present on-the-shelf doppler radar is too heavy.

However, there are means to get around these difficulties. Therefore radar is

considered a candidate.
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Accelerometers

Accelerometers mounted on the LRV can be used to measure the components of

the vehicle acceleration along the LRV axes. This acceleration can be resolved

along some fixed axes and then twice integrated to determine the LRV position.

The accelerometer null bias and linear error both contribute to the navi-

gation inaccuracy. The effect of the accelerometer bias can be reduced by

including a simple logic circuit that will stop the integration of the accelero-

meter signal when the wheel odometers indicate that the vehicle is parked.

Because of the accuracy of state of the art devices and their light weight

(i kg.) inertial accelerometers are worthy of consideration for LRV navigation.

Odometers

Odometers measuring the angular rate of the LRV wheels are obvious candi-

dates for determining the vehicle velocity. They are especially attractive

because the odometer signals are available from the electric motors that are

used to drive the LRV. Consequently no weight is charged to the navigation

system for the inclusion of odometers. An important source of error is wheel

slipping.

2-3. Vertical Determination

Inclinometer

The most obvious method for determining the vertical is with a pendulous

inclinometer. This vertical sensing instrument is either an electrolytic or

electromagnetic, liquid damped pendulum device. It is lightweight - - only

about 0.2 kg.

One potentially degrading feature of a pendulous inclinometer is that it

will swing when the vehicle accelerates. This disadvantage can be avoided by

using a heavier vertical gyro.

Vertical Gyro

A vertical gyro is a second technique for determining the local vertical.

This instrument consists of a gyro with its spin axis maintained parallel to



i0

the local gravity vertical by a gravity sensitive device. The advantage of a

vertical gyro is that the vertical gyro is not disturbed by vehicle acceleration.

A weight penalty must be paid to achieve this advantage. The vertical gyro weighs
about 2 kg, ten times as muchas a simple inclinometer.

The vertical gyro's insensitivity to vehicle acceleration is achieved by

disconnecting the gyro from the vertical reference signal whenever it is recog-

nized that the vehicle is accelerating. Onthe LRVthe wheel odometer signals
could be used to sense acceleration and cause the gyro to be disconnected from

the pendulous vertical reference. Or the vertical reference could be applied to

the gyro only during those periods when the LRV is stopped. During the time

when it is disconnected from the vertical gravity reference the gyroscope main-

tains the vertical direction because of its gyroscopic characteristics.

Both the pendulous inclinometer and the vertical gyro are gravity sensitive

devices. Neither of them will compensatefor local gravity anomalies in order

to provide the geometric vertical. Although this will probably cause serious

difficulties for those DLRVposition fixing schemesthat require the local ver-

tical, this gravity anomaly problem is not expected to have a serious impact on
the dead reckoning schemes.

2-4. Azimuth Determination

Directional Gyro

A directional gyro can be used for azimuth determination. This is a two

degree of freedom instrument with the spin axis maintained in the horizontal

plane. Precisely determined torques must be applied to the gyro in order to

keep the spin axis in the horizontal plane as the horizontal plane rotates in

inertial space because of the lunar rotation and vehicle motion across the lunar

surface. This method of azimuth determination is attractive because it is self-

contained and because many years of evolutionary refinement have been devoted to

this navigational technique.

Sun Sensor

A celestial reference such as the sun provides a second technique for

azimuth determination. The measured line of sight from the vehicle to the

sun can be projected into the measured horizontal plane. The lunar ephemeris



will locate i2 in the horizontal plane relative to this projected celestial
line of sight if the navigator knows the time and lunar region where the LRV
is located.

It is encouraging to notice that the moonrotational rate is much less
than the earth's. During a three hour LRVsortie the moonwill rotate only

about 1.5 ° . Consequently it might be possible to use the same ephemeris data

for the duration of a sortie rather than continuously updating the ephemeris.

One mission restriction imposed by the use of the sun line of sight for

azimuth determination is that the LRV must not go behind any objects that

would obstruct the vehicle to sun line of sight. Obviously such a device

could not function during the lunar night.

One instrument for measuring the line of sight to the sun is a sun aspect

sensor. In this device the pattern of a reticle shadow is observed by an array

of photoelectric cells and electronically translated into a measurement of the

sun line of sight direction. This device is attractive because it is fixed on

the LRV and does not require moving gimbals as would a conventional sun tracker.

It is expected that a sun aspect sensor would weigh less than 2.5 kg and could

provide about one arc minute angular resolution.

An alternate technique for determining the line of sight from the vehicle

to the sun is to use a gimbaled sun tracker that would utilize a photoelectric

device as a sensor and a closed tracking loop to keep the axis of the device

pointed at the sun. This technique is unattractive because the required gim-

bals would probably be heavier than the digital sun aspect sensor.

ii

2-5. Position Fixing - Line of Sight Devices

Celestial Trackers

In order to use star sightings to generate a position fix for the LRV it

is necessary to measure the directionto known stars. This measurement is per-

formed using an optical star tracker. It is also possible that this device

could be used to measure the direction to an artificial lunar satellite.
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Doppler Radar

One method of determining a position fix involves measurin_ the range for

a navigation satellite as it passes overhead. A doppler radar is used for

this measurement.

Radar

Conventional radars that measure the time delay for the reflection of a

transmitted signal could be used to measure the distance and direction from

the LRV to an artificial lunar satellite. These measurements could be used

to establish a position fix.

Laser

A laser tracker offers an alternate method of measuring the direction of

an artificial satellite. The primary advantage of a laser is its very narrow

beam width.

Transit

Lunar landmarks can be used for navigation. Clearly, landmarks that are

shown on ava±±aule ±unaL_.... maps uuu_u_ b_ ....u_; +_v _cI,,_p _°_o_1_=h................._ pn_nn f4Y

for the LRV. A transit can be used to makeangular measurements. The required

accuracy and the corresponding size and weight of the transit will depend upon

the role that is assigned to landmark navigation techniques. If landmark navi-

gation is used as a primary system for establishing precise position fixes, then

a very accurate transit will be required. If, on the other hand, landmark navi-

gation is reserved as a simple, reliable, back-up navigation system, then the

accuracy requirements can be relaxed. Some of the schemes discussed in Chapter

8 could provide valuable guidance information to an astronaut even if he were

forced to walk back to the LEM from a disabled LRV. The transit suited to this

purpose could be so simple and lightweight that it would be carried in a pocket

of the astronaut's suit.
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The level of detail at which a system designer is working determines what

he considers to be components of his system. Here, gyroscopes and odometers have

been listed as components that are used in navigation systems. However, the

designer of a gyroscope might verywell list the rotor and the gimbals as com-

ponents of his design. Similarly, a system designer studying the problem of

optimally integrating the information obtained from dead reckoning and position

fix navigation techniquesmight very well consider a complete inertial platform

as one component in the overallnavigation scheme. Two different types of

inertial platforms are available: gimbaled platforms and strapdown or computa-

tional platforms. Both types of platform have the same purpose. They measure

the vehicle orientation in space.

Gimbaled Platform

The classic inertial platform that has been used for many years is a gim-

baled inertial platform. In this mechanism the signals from gyros are used to

stabilize in space the orientation of a mechanical gimbal. The gyroscopes are

mounted on the gimbals of a gimbal system that has two or more degrees of free-

dom. One of the gimbals is fixedto the vehicle. Signals from the gyroscopes

drive torque motors that apply to the gimbals whatever torques are required to

stabilize in space _he gi_pal that is "_LLI=.......=_u=_1 _.._+_I_ p1_.......... Thp___g_mba]

angles provide a measure of the vehicle orientation relative to the stabilized

gimbal and, consequently, provide a measure of the vehicle orientation relative

to space.

The mechanical gimbals required for this type of platform are heavy. There-

fore the gimbaled platform is unsuited to the LRV application.

Strapdown or Computational Platform

An alternate way to determine the vehicle orientation is with a strapdown or

computational platform. The instruments used in a strapdown platform are rate

gyros with their sensitive axes mounted along three orthogonal vehicle axes. By

resolving the measured angular rate of the vehicle into an inertial coordinate

system and then integrating the angular rate, a continuous measure of the

vehicle orientation is generated. The resolution and integration of the angular
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rate is performed by a special purpose digital computer. This type of platform

is simpler from the instrument standpoint and thus can be lighter and smaller

than a gimbaled inertial platform.
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3-1. DeadReckoning

Dead reckoning is the technique of integrating a vehicle's velocity vector

with respect to time in order to maintain a continuous measure of the vehicle

position. Fig. 3-1 is a block diagram description of the dead reckoning navi-

gation concept. The dead reckoning schemesconsidered here measure, resolve,

and integrate the velocity vector in three steps.

i. The LRVvelocity vector is measuredand the LRV

orientation relative to lunar navigation coordinates
is also measured.

2. The information measuredin step i is used to
resolve the LRVvelocity along lunar fixed navi-

gation coordinates.

3. The LRVvelocity componentsare integrated with

respect to time to determine the LRVposition.

In this chapter the sets of navigation equations relating the velocity

vector of the LRVto its position on the lunar surface are presented. A position
on the lunar surface is defined by a triad including the lon_itude, the lati-
tude, and the distance from the lunar center. Twosets of navigation equations

are discussed. The first one assumesa spherical lunar surface. The second

one is an approximation of the first. The simplified equations are accurate

enough for LRVnavigation if its excursion range is small.

3-2. Navigation Equation Set No. i

This section presents a set of navigation equations where no approximation

is made. Navigation is considered in east, north, and vertical directions. No

assumptions are imposed on the lunar terrain nor on the LRVexcursion range.
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Navigation Equations

The geometry of special lunar coordinates is depicted in Fig. 3-2. In this

figure there are latitude L, longitude _, horizontal distance H, eastward dis-

tance E, northward distance N, radial distance R, and AX for the increment of any

variable X. V represents the velocity of a reference point on the LRV, _ is the

heading angle of V and e is the elevation angle of V.

Let S be the linear distance, then we have the following incremental quanti-

ties.

AS

AH

AR

AL

= incremental distance

= incremental horizontal distance

AS cos e = v cos 8 At

incremental radial distance

AS sin 8 = V sin e At

incremental latitude change

AH cos P V cos 8 cos
- = At

R R

incremental longitude change

AH sin _ V cos e sin
= At

R cos L R cos L

Taking limits gives the following rate equations.

VH = H = V cos e ,

vR = R = V sin e ,

_L = L = vH cos
R

_ _- i = VH sin
RcosL '

horizontal speed

vertical speed

latitude rate

longitude rate

(3-1)

(3-2)

(3-3)

(3-4)

Integrating the last three equations yields

f

Latitude L = Lo + J|_L
dt

t

= L + r V cos e cos
o J R

dt (3-5)
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Lunar North

AL

\
Lunar Equator

Vertical

E

Geometry of Lunar Coordinates

Fig. 3-2
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Longitude %= %o+ f _%dt

+ r v cos e sin _ (3-6)
= ko j R cos L

[

Altitude R = R + )|VR
dt

o

= Ro + I V sin % dt (3-7)

The above three equations give the position of the LRV in terms of lunar coordi-

nates. The computations involved in these equations are shown in block diagram,

Fig. 3-3.

Error Analysis

Because of the imperfection of sensors the measured quantities always differ

from actual quantities. The differences lead to errors in navigation.

Let CX denote the errors in X', the measured value of X. Then we have

Then

e' = e + e6 = measured pitch angle

V' = V + eV = measured speed.

VH ' =

VR ' =

V' sin e' = (V + eV) sin (0 + ¢ e)

V' cos e' = (v + Sv ) cos (e + se)

_'L = R'

V v COS _,
H

V'H sin _'

k R' cos L'

(V + eV) sin (@ + ee) cos (_ + e_)

R+ CR

(V + eV) sin (6 + ee) sin (_ + aT)

(R + CR ) cos (L + eL )

Integrating the last three equations gives
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L !
=L+¢ L

=L +e +
o L

O

(V + _V ) sin (0 + e0) cos (P + _)

R+ ER
dt (3-8)

= X+e%

(V + EV) sin (0 + eo) sin (_ + e_)

o + e_o + J (R + eR) cos (L + eL)
dt (3-9)

R' = R + eR

= Ro + eR o + J (V + ¢V ) cos (O + ¢0)
dt (3-10)

Subtracting (3-5), (3-6), (3-7) from (3-8), (3-9), (3-10), respectively, we obtain

the following error equations for LRV navigation.

[ (V + eV) sin (8 + eO) cos (_ + ep)

eL = eLo + j R + eR
dt

f V cos 0 cos- R at (3-11)

(v + ev ) sin (0 + e0) sin (_ + e_)

(R + CR ) cos (L + eL )

dt

_ f V cos e sinR cos L
dt (3-12)

eR += CRo (V + eV) cos (8 + e0) dt - f V cos O dt
(3-13)

The above equations show that navigation errors are a nonlinear function of

measurement errors. To study the effect of measurement errors on navigation,

these equations can be simulated by digital computers.
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3-3. Navigation Equation Set No. 2

Whenthe excursion range of the LRVJs small, a set of simplified navigation

equations can be used. Twoapproximations are made, namely

i) R = R , a constant, in Equations (3-5) and (3-6)
o

ii) cos L = cos Lo, a constant, in Equation (3-6)

Consider the _RV mission where the excursion range will be less than 5 km.

The maximum change in latitude is

5
_L - = 0.00288 radian = 0.16 °

max 1738

where 1738 is the lunar radius in km.

change in cos L for 5 km excursion is

Within + 20 ° of lunar equator the maximum

cos 20 ° - cos 19.84° I = -0.93969 + 0.940681 = 0.00099.

This contributes to a maximum final position error of about 0.099%.

Navigation Equations

Applying the two approximations mentioned above, Equations (3-5), (3-6), and

(3-7) become

fi
Latitude L = L + |--6-- V cos _ cos _ dt

o Jo

(3-14)

= % + i r V cos e sin P dt (3-15)Longitude
o R cos L J

o o

l
Altitude R = R + I V sin e dt (3-16)

o J

The computation block diagram for this simplified set of navigation equations

is shown in Figure 3-4. Comparing this set to the previous set we see that the

divisions by variables are eliminated.
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Two kinds of errors are involved in using this set of navigation equations.

The first kind is the system error which is due to the use of two approximations.

The second kind is due to measurement errors.

Replacing variables in (3-14), (3-15), and (3-16) by their measured value

and then comparing the resulting equations to (3-5), (3-6), and (3-7), respec-

tively, we obtain the following set of equations for error simulation.

eL e + 1 I
= Lo -_o (V + eV) cos (8 + e8) cos (_ + e_) dt

I V cos e cos- R dt (3-17)

_% + I I
= E% o R° cos L °

(V + eV) cos (e + ee) sin (_ + ep) dt

- I V cos e sin $R cos L dt (3-18)

eR = eRo + I (V + ev) sin (¢ + se ) dt - I V sin e dt (3-19)
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ODOMETER NAVIGATION SYSTEM
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It is known that there will be an odometer mounted on each wheel of the LRV

as part of the wheel package. The odometer used will have angular rate output as

well as angular displacement output. Furthermore, the weight of odometers will

not be charged to the allowed weight of the navigation system. Therefore, it is

very desirable that the navigation system take advantage of the available odo-

meter output.

In the following development it is assumed that the LRV frame consists of two

T-frames, as shown in Fig. 4-1, hinged at the feet of the two T's. Four wheels

are attached to the arms of T's. Only two front wheel odometers are used in the

following development.

4-1. Pure Odometer Navigation System

In principle, when the ground is level, two odometers alone can provide exact

coordinates of the LRV if the initial position and heading of the vehicle are known,

and can provide the relative position with respect to the initial position if the

initial coordinates are not known. A pure odometer navigation system for the level

surface is developed here.

Let X(t) and Y(t) be the distance measured eastward and northward, respec-

tively. The LRV position and heading at any time is given by (see Fig. 4-2)

and

where

_t

x(t) = x + lo
J
o

V(t I) sin _ (tl) dt I

ftY(t) = Yo + V(t I) cos _ (t I) dt 1
o

(4-i)

t

_(t) = _o + I °°(tl) dtl
o

(4-2)

Xo' Yo' _o = initial value of X, Y, and _, respectively.

V = LRV linear velocity
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A LRV Frame

Fig. 4-1
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= angular velocity of the wheel axis about its

instantaneous center of curvature.

The velocities of the left and right front wheels are

VL = m (r - a) (4-3)

whe re

Hence,

Also,

VR= m (r+a)

r = instantaneous radius of curvature

a = half axial length

VR - VL

2a

V R + VL
V=

2

(4-4)

(4-5)

Substituting (4-2), (4-3), (4-4), and (4-5) into (4-1) yields

it itl
VR(t I) + VL(t l) VR (t2) - VL(t2)

X(t) = X + sin (P +
o 2 o 2a

_O O

t VR(tl) + VL(tl)
Y(t) = Yo + o 2 cos (_o +

tlvR(t2) - VL (t2)

"0

dt 2) dt I

dt 2) dt I

(4-6)

Equations (4-6) and (4-2) give the LRV's position and heading at any time t.

An instrumentation block diagram of the navigation system is shown in Fig. 4-3,

which is fairly simple.

4-2. Remarks and Simulation

The merit of this scheme is its simplicity. However, it has the disadvan-

tage that it is sensitive to wheel-slip and wheel-lock. Any slipping or locking

of a wheel will generate both permanent heading and distance error. The possibility

of a permanent heading error is a very serious disadvantage.
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Heading angle _ = -45 °

LRV velocity i0 meters per second

Tilt angle of

flat surface

_=B--O

_--B=5 °

ct = B = 10 °

Actual horizontal

distance

5.0

49.622

48.515

Approximate horizontal

distance by pure

odometer navigation

5.0

5.0

5.0

% Error

0.755

2.97

Simulation of Odometer Navigation Systems (Fig. 4-4)

Zero Heading Rate

Table 4-1
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Y

40

30

(m) 20

i0

m
V = lO--

sec

=0

= 45 °

o
y

/

/

0 i0 20 30 40

X (meters)

[e] :

[A]:

[®] :

= 0 °, B = O°

_ = 5o o,B=5

c_ = i0 °, _ = i0 °

Simulation of Pure Odometer Navigator (Table 4-1)

Fig. 4-4



Heading rate m = _ = -sin 2t
Flat Surface Tilt angle _ = B = 5°
LRVvelocity V = i0 meters per second
Initial heading angle _ = 0°

O

32

Time

0

7/10

27/10

3_/i0

47/10

5_/i0

6_/i0

7_/i0

8_/i0

9_/i0

117/10

12_/i0

13_/i0

14_/i0

15_/i0

16z/10

17z/10

18_/i0

197/10

27

Actual

X(m)

0

1.0127xi0 -I

7.5721xi0 -I

2.2573

4.4810

7.0674

9.6537

1.1877xi0

1.3377xi0

1.4033xi0

1.4134xi0

1.4235xi0

1.4891xi0

1.6391xi0

1.8614xi0

2.1200xi0

2.3787xi0

2.6010xi0

2.7510xi0

2.8166xi0

2.8267xi0

LRV Horizontal Position

Y(m)

0

3.1387

6.2025

8.9484

i.i156xi0

1.2937xi0

1.4717xi0

1.6925xi0

1.9670xi0

2.2734xi0

2.5872xi0

2. 9011xi0

3. 2075xi0

3.4820xi0

3.7028xi0

3. 880 8x10

4.0589xi0

4.27797xi0

4.5542xi0

4.8606xi0

5.1744xi0

X(m)

Pure Odometer

Y-error

(%)

Approximation

Y(m) Y-error

(%)

0 0

8.6672xi0 -2 2.9702

7.5435xi0 -I 6.1732

7.2488 8.8913

4.4641 i.i079xi0

7.0407 0.378 1.2834xi0 0.796

9.6173 1.4588xi0

1.1832xi0 1.6770xi0

1.3327xi0 1.9494xi0

1.3780xi0 2.2541xi0

1.4081xi0 0.375 2.5667xi0 0.792

1.4181xi0 2.8793xi0

1.4835xi0 3.1840xi0

1.6329xi0 3.4564xi0

1.8544xi0 3.6746xi0

2.1120xi0 0.377 3.8500xi0 0.794

2.3697xi0 4.0255xi0

2.5912xi0 4.2437xi0

2.7406xi0 4.5161xi0

2.8059xi0 4.8208xi0

2.8160xi0 0.379 5.1334xi0 0.792

Simulation of Odometer Navigation Systems

Non-Zero Heading Rate

Table 4-2

(Fig. 4-5)
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50

40

Y (m) 30

20

i0

!F

Appr°x  iual
i--

(X = 5 °

B = 5 °

= 0 °
O

V= I0 m
sec

= -sin 2t

0 i0 20 .30

X (meters)

Simulation of Pure Odometer Navigator (Table 4-2)

Fig. 4-5



Heading rate m = _ = sin 2t
Flat Surface Tilt angle _ = B = 5°

LRV velocity i0 meters per second

Initial heading angle P = -45 °
o

34

Time

0

7/10

27/10

3_/i0

47/10

57/10

6_/i0

7_/i0

87/10

9_/i0

Ii_/i0

12_/i0

13_/i0

1 l,_ /1N

25_/10

16_/10

17_/i0

18z/lO

19_/i0

2_

LRV Horizontal Position

X(m)

Actual

Y(m)

0

2.2910

4.9213

7.9236

i.i057xi0

1.4145xi0

1.7233xi0

0

2.1478

3.8504

4.7313

4. 7197

4. 1503

3.5808

Pure Odometer Approximation

X(m) Y-error Y(m) Y-error

0 0

2.2823 2.1222

4.9027 3.7985

7.8937 4.6533

i. 1015x10 4. 6181

1.4092xi0 0.375% 4.0274

i. 7168xi0 3.4368

2.0366xi0

2.3369xi0

2.5999xi0

2.8290xi0

3.0581xi0

3.3211xi0

3.6214xi0

3.9347x!0

4.2435xi0

4.5523xi0

4.8656xi0

5.1659xi0

5.4289xi0

5.6580xi0

3.5693

4.4502

6.1509

8.3006

1.0448xi0i

1.2151xi0

1.3032xi0

1.3020xi0

1.2451xi0

1.1881xi0

1.1870xi0

1.2751xi0

1.4454xi0

1.6601xi0

2.961%

2.0290xi0 3. 4016

2. 3281xi0 4. 2564

2.5901xi0 5.9327

2.8183xi0 0.378 8.0549 2.960

3.0465x10 i. 0177xlO

3. 3086xi0 I. 185 3x10

3.6077x10 i. 2708xi0

3.9198x10 i. 26 73x10

4.2275xi0 0.377 i. 2082xi0 2.964

4.5351xi0 I. 1492xi0

4. 8473xi0 i. 2311x10

5. 1464xi0 i. 2311x10

5.4084xi0 i. 3988xi0

5.6366xi0 0.378 1.6110xlO 2.958

Simulation of Odometer Navigation Systems

Non-Zero Heading Rate

Table 4-3

(Fig. 4-6).
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Heading rate _ = _ = -sin 2t

Flat Surface Tilt anglee = 8 ffii0 °

LRV velocity I0 meters per second

Initial heading angle _ = 0 °
O

36

Time LRV Horizontal Position

0

_/10

2_/i0

3_/i0

4_Ii0

5_/10

6_/i0

7x/10

8_/i0

9_/10

IT

10_/10

12_/i0

13_/i0

14_/10

15_/10

16_/i0

17_/i0

18_/i0

19x/10

2_

Actual

X(m) Y(m)

0 0

1.0127xi0 -I 3.1387

7.5721xi0 -I 6.2025

2.2573 8.9484

4.4810 1.1145x10

7.0674 1.2937xi0

9.6537 1.4717x10

1.1877x10 1.6925x10

1. 3377x10 1.96 70x10

1.4033x10 2.2734x10

1. 4134x10 2.5 872x10

1.4235x10 2.9011x10

1.4891x10 3.2075x10

1.6391x10 3.4820x10

i.86i4xi0 3.7028xi0

2.1200x10 3.8808xi0

2.3787Xi0 4.0589xi0

2.6010x10 4.2797xi0

2.7510xi0 4.5542xi0

2.8166x10 4.8606x10

2.8267x10 5.1744x10

X(m)

Pure Odometer Approximation

Y-error Y(m) Y-error

(%) (%)

0 0

9.9773x10 -2 3.0880

7.4604x10 -1 6.0858

2.2240 8.7454

4.4149 1.0835xi0

6.9632 1.474 1.2530xi0 3.146

9.5114 1.4207xi0

1.1702xi0 1.6315xi0

1.3180x10 1.8974xi0

1.3826xi0 2.1972xi0

1.3926xi0 1.472 2.5060x10 3.139

1.4025xi0 2.8147xi0

1.4670x10 3.1145xi0

1.6149xi0 3.3805xi0

1 ,o_..In _ _q12_]0

2.0888X10 1.472 3.7589X10 3,141

2.3436X10 3.9266X10

2.5627X10 4.1374X10

2.7104X10 4.4033X10

2.7750X10 4.7031X10

2.7850xi0 1.475 5.0119xi0 3.140

Simulation of Odometer Navigation Systems

Non-Zero Heading Rate

Table 4-4

(Fig. 4-7).
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50

40

Y (m) 30

20

I0

q

Approximation. _ 7j

i

Actual

1

1
I

I

/ = i0 °

= i0 °

= 0 °

O

V = i0 m
_qec

= -sin 2t

0 i0 20 30

X (meters)

Simulation of Pure Odometer Navigator (Table 4-4)

Fig. 4-7



Heading rate m = _ = -sin 2t
Flat Surface Tilt angle _ = B = i0 °
LRVvelocity i0 meters per second
Initial heading 40 = -45 °
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Time

0

_/i0

2_/i0

3_/i0

4_/i0

5_/i0

6_/i0

7_/i0

8_/i0

9_/i0

ii_/i0

12_/i0

13_/i0

14_/i0

157/10

16_/i0

17_/i0

18_/i0

19_/i0

2_

LRV Horizontal Position

Actual

x(m)

0 0

2.2910 2

4.9213 3

7.9236 4

i.i057xi0 4

1.4145xi0 4

1.3233xi0 3

2.0366xi0 3

2.3369xi0 4

2.5999xi0 6

2.8290xi0 8

3.0581xi0 1

3.3211xi0 1

3.6214xi0 1

3.9347xi0 1

4.2435xi0 1

4.5523xi0 1

4.8656xi0 1

5.1659xi0 1

5.4289xi0 1

5.6580xi0 1

Y(m)

.1478

.8504

.7313

.7197

.1503

.5808

.5693

.4502

.1529

.3006

.0448xi0

.2151xi0

.3032xi0

.3020xi0

.2451xi0

.1881xi0

.1870xi0

.2751xi0

.4454xi0

.6601xi0

X(m)

Pure Odometer Approximation

Y-error Y(m) Y-error

(%) (%)

0

2.2572

4.8487

7. 8068

1.0894xi0

1. 3936xi0

1.6979xi0

2.0066xi0

2. 3024xi0

2.5616xi0

2. 7873xi0

3.0130x10

3. 2722xi0

2.5680xi0

3. 8767x10

4. 1809xi0

4.4852x10

4. 7939xi0

5.0897x10

5. 3489xi0

5.5746xi0

2.0470

3.6457

4. 4240

4.3195

1.478 3.6670 11.638

3.0145

2.9100

3.6884

5.2870

1.474 7.3341 11.638

9.3811

1.0980xi0

1.175_x10

1.1653xi0

1.475 1.1001xlO 11.646

1.0349xi0

1.0244xi0

i.i023xi0

1.2621xi0

1.474 1.4668xi0 11.644

Simulation of Odometer Navigation Systems

Non-Zero Heading Rate

Table 4-5

(Fig. 4- 8).
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It has been noted that these navigation equations are valid only when the

terrain is flat and level. Any attempt to extend them to account for tilted ter-

rain will add a vertical and a directional sensor to the list of required hardware.

These are the same sensors required for the navigation equations described in Chap-

ter 5. Even if these sensors are added, the system that is produced by extending

this odometer navigation concept is inferior to the system described in Chapter

5. Clearly, the odometer navigation scheme looses its attractive simplicity when

it is pushed beyond the flat and level terrain.

However, a digital computer simulation was built to determine how well a

system using the equations for flat and level terrain would perform if it were

used on terrain that is actually tilted. Appendix A describes a technique for simu-

lating this problem. The results of this simulation are listed in Tables 4-1

through 4-5 and shown in Figs. 4-4 through 4-8.

In these tables and figures the angles _ and B are used to define the tilted

plane. Let the level plane have orthogonal axes, x and y. Let the tilted plane

x' and y' Picture a line that is the intersection of thehave orthogonal axes,

x'y' tilted plane with a vertical plane that includes the x axis. _ is the angle

between the x axis and this line. B is the angle between the y axis and the y'

axis (Fig. 4--9).

The heading angle, _, is the angle between the x' axis and the vehicle velo-

city vector. The sign of this angle is defined by noting that P is between 0 to

90 ° if both the x' and y' components of the velocity are positive.

These simulation results show that the simple odometer navigation system can

be useful even when it is used on terrain with moderate tilt. In particular, it

appears that this scheme could providea valuable back-up to a more complete dead

reckoning system that might be temporarily disabled. For example, a dead reckoning

package that obtains its direction reference by watching the sun would be tempo-

rarily disabled if it were shadowed. The odometer navigation system could be used

until the primary dead reckoning system is able to see the sun again and thus

regain its directional reference.
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!
Y

X !

(x' ,y')

v

X

(x ,'y )

X

Definition of Angles _ and B

Fig. 4-9



CHAPTER5

DEADRECKONINGMECHANIZATIONPROBLEMS
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In Chapter 3 the navigation equations for dead reckoning were examined.

These equations show that in order to instrument a dead reckoning navigation

schemeit is necessary to measurevarious quantities that can be combined to

determine the vehicle vector. These quantities include the forward speed of the

vehicle and the angles that define the vehicle orientation relative to somefixed

navigation coordinate system. Someof the hardware componentsthat are available

to the system designer for making these measurementshave been listed. The

following is a closer look at the ways that these instruments can be used and

at someof the problems associated with their use.

5.1. Odometers

If odometers are used to measure velocity a couple of interesting, poten-

tial problems arise. The most straight-forward approach to measuring the velo-

city vector is to assumethat is is parallel to the vehicle longitudinal axis

and that its magnitude is proportional to the measuredwheel rates. Unfortu-

nately this approach does not measure the velocity precisely when the LRVencoun-

ters an irregular lunar surface where it must climb over obstacles or whenever

it turns to the right or left.

Fig. 5-1a shows the LRVclimbing over a block. In this case the velocities
of the front and rear wheels are not even colinear. Neither of these velocities

are along the vehicle axis. Fig. 5-1b showsanother situation where neither the

velocity of the front nor rear wheels is along the longitudinal axis. Here the

LRV is traveling over rolling hills represented by a sine profile.

Fig. 5-2 shows another troublesome situation. Whenthe LRV is going

around a turn the odometer for the outside wheel indicates a larger speed than

the odometer for the inside wheel. The selection of which signal to use must

be done carefully.

The pertinent question is "How do these discrepancies affect navigation

accuracy?" A feel for the answer to this question can be developed by consi-

dering somespecial cases that represent the problems described above.
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(a)

(b)

LRV Traveling Over Irregular Surface

Fig. 5-1
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Turning of a Pair of LRV_neels

rig. 5-2
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Goin$ Over an Obstacle

First the problem of going over an obstacle will be considered. In Fig. 5-3

the vehicle is going over a spike that is as tall as the wheel radius. Two diffe-

rent types of errors are generated when the LRV rolls over a block. One type of

error is generated while the LRV rolls up onto the block and back off of the block.

A second type of error is generated while the LRV rolls across the top surface of

the block. Considering a spike rather than a block focuses our attention on the

first type of error.

The actual distance traveled by the vehicle while it is rolling over the

spike is X = 2R. If the front wheel odometers were used to measure velocity then

X', the computed horizontal travel would be

= I Ra' cos 8 dt (5-1)X'

where a' is the measured a, by odometer. But

' =a+

XV = R ] a v cos @ dt + R I 8 cos O dt

= R [ cos @ da + R ; cos O d0

Because of symmetry the value of the second integral for the period when

the wheel is going up is exactly cancelled by the integral for the p_iud when

the wheel is going down. Now

X' = R cos 0 da

o

From Fig. 5-3 it is-seen that

so that

Now

L sin 0 + R sin a

COS @ = R2
1 - -- sin 2 a

L2

R2 sin 2 a da

L2
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For an extreme case when R/L = i/2, X' = 2.93R. Therefore the navigation

error accumulated while climbing over this spike is 0.93R.

This brief example demonstrates a problem that is present not only when

the vehicle is going over blocks or spikes but also whenever the vehicle encoun-

ters smooth, but rolling hills.

Curved Paths

Another problem in the use of odometersiswheel slip. Obviously if the

wheels slip this can lead to an erroneous measure of the distance traveled.

One possible way to try to alleviate this problem is to use the odometer reading

from that wheel that is turning most slowly. In this way the signals from a

slipping, overspeeding wheel are ignored. However, this solution to one problem

can lead to another kind of trouble as shown in Fig. 5-4.

Here the vehicle is traveling on a smooth flat surface. The trajectory

consists of a series of arcs of circles of equal radii, r. The actual distance

traveled for one half cycle of this trajectory is

X = 2r sin--Y-- (5-2)
2

A navigation scheme that uses the odometer signals from the slowest wheel will

select the wheels on the inside of the turn. Consequently the computed dis-

tance traveled is

I d _ _ dtX' -- (r - _) cos

For one half cycle of travel

fy/2 d

X' = J (r- _) cos_ d_
-y/2

X' = (2r - d) sin y/2

The resulting navigation error is

e = X' - X = (2r - d) sin _ - 2r sin _2

e = - d sin Y-- (5-3)
2
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1 _ istance traveled, non zero.

Lewest odometer reading

J ] Is zero!

(a)

(b)

LRVFollowing Curved Path

Fig. 5-4
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For an extreme case when the trajectory is a sequence of half circles so

that y = _ radians, then

e _ ud,

These simple examples show that any navigation system that uses odometers

must be carefully designed. These sources of error must be recognized and

examined to determine if they are small enough to be tolerable. If they cannot

be tolerated some plan must be devised to eliminate them. What follows is a

description of a scheme that could be used to eliminate the error in the velo-

city measurement that is caused by going over an irregular surface.

Velocity Measurement Technique

The signals from an inclinometer can beused, in conjunction with odo-

meters, to determine the velocity accurately. Again refer to Fig. 5-3. Let

and b be the angular rates of the front and rear wheels relative to space.

Then the measured values of a and b will be

6'
(5-4)

So that

a= a' -0 ]

I (5-5)

The quantities on the right of (5-5) can be measured and a and b can be

easily computed. Now

= R a

(5-6)

The axle separation is constant. Therefore

^ ^

_F " il = _R " il (5-7)

^
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The angular rate of the chassis is

I--_ (iI x (5-9)

x (5-10)

and V F and V R can be determined from (5-6), (5-7), and (5-8) . Let

^

_F = VF cosa iI + VF sin_ Jl

^ ^

_R = VR cos8 iI + VR sin8 Jl

(5-11)

Combining (5-7) and (5-11) produces

VF cos_ = V R cos8

Combining (5-10) and (5-11) gives

I^ ^_L = iI x [(V F cos - VR cos B) iI

+ (V F sin - VR sin _) jl ]

(5-12)

(5-13)

From (5-11)

eL = (VF sin_ - VR sin B)

Taking 8 as positive for counter clockwise motion gives

(5-14)

8L = VF sine - VR sin8

8L = V F i -(_F ) cos B - VR sin B

(SL) 2 + 8L VR sin 8 + VR2 sin 2

(5-15)

(5-16)

= VF2 - VF2 cos 2 8 (5-17)



51

2eL VR sin 8 = VF2- VR2- (eL)2 (5-18)

I - VR2- i
8 = sin -I VF2 (_n)2 (5-19)

Similarly (5-12) and (5-15) can be manipulated to show that

I _ VR2 ]
= sin -I VF2 + (eL)2

2 VF eL
(5-20)

Nowequations are available for computing the wheel velocities. (5-5) gives

the magnitudes of the wheel velocities; (5-19) and (5-20) give the directions of
the velocities.

Unfortunately (5-19) and (5-20) fail whenthe velocities are equal vectors.
In this case e is zero and the right sides of (5-19) and (5-20) are indeter-

minate.

It might be tempting to say that the velocities must be directed along the
vehicle axis if the vehicle axis is not rotating so that e is zero. However,

Fig. 5-5b illustrates a case that violates such an assumption. The odometer and

inclinometer signals will be identical for the situations shown in Fig. 5-5a and
5-5b.

A =ooo._ eoohn_n,,_ For a_e=_m_n_no eh_ T RV vploe_ey _h_t does not suffer
................. _ ................... O ..............

from this ambiguity requires the addition of another sensing device, a ground

contact sensor. However, it does not use any measurement of the vehicle axis

angular rate as did the previously discussed method.

^

The ground contact sensor would measure the angle between the LRV axis, il,

and the radius to that part of the wheel that is in contact with the ground.

This angle is labeled C in Fig. 5-6. One possible way to instrument this sen-

sor might be the use of an array of strain gages mounted on the inside peri-

meter of the LRV wheels. The strain gage that is in that part of the wheel that

is in contact with the surface would sense the resulting deformation of the wheel.

Another device, either mechanical or photoelectric, would measure the attitude

of the wheel relative to the LRV axis. The signals from these two devices could

be combined to generate the angle C.

If C can be measured then the velocity can be resolved along the vehicle

axes.
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(a)

(b)

Two Cases with Zero Angular Rate and Equal Elevation

Fig. 5-5
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i I
I I

cR

Ground Contact Sensor Geometry

Fig. 5-6



_F = R$ [cos CF il + sin CF 31] (5-21)

^

VF = R8 [cos CR i I + sin CR jl ] (5-22)
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5-2. Accelerometers

An accelerometer is used to measure translational acceleration. Modern

accelerometers that are used in aerospace systems today are sophisticated refine-

ments of the simple concept illustrated in Fig. 5-7. If the aecelerometer case

in Fig. 5-7 is accelerated along thesensitive axis this mechanical system will

obey Newton's laws. The spring will be stretched so that its change in length

is proportional to the applied acceleration. Therefore, this reaction to the

applied acceleration can be used to measure the acceleration.

Two possible uses for accelerometers in dead reckoning navigation systems

will be discussed. First, it will be shown that accelerometers can be used to

instrument a strapped-down vertical sensor that will measure the roll and eleva-

tion angles of the platform on which they are mounted. Secondly, it will be shown

how accelerometers should be used to determine the translational motion of a

strapped-down platform.

_trapped-Down Vertical _ensor

Consider two accelerometers mounted on the LRV chassis with normal sensi-

tive axes as shown in Fig. 5-8. If the vehicle is not accelerating then the

instrument outputs will be

Accelerometer No. i output = a sin e
g

Accelerometer No. 2 output = - a cos e sin
g

where a is the local acceleration of gravity. Clearly these equations can be
g

used to determine 8 and _ from the accelerometer signals.

Measurement of Translational Motion

Accelerometers can also be used to measure translational motion. Three

accelerometers mounted on the LRV chassis with their sensitive axes along the

vehicle axes sense the acceleration of the point at which they are mounted.
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56

Instrument Number2

Sensitive Axis along k_

I

Instrument Number i^

Sensitive Axis along iI

Two Strapped Down Accelerometers Used as a Vertical Sensor

Fig. 5-8
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The accelerometers signals can be used to write the acceleration vector of
that point as follows:

^ ^ ^

a = ailil + ajlJl + aklk I

^ ^ ^

where il, Jl' and k I are unit vectors along the vehicle axes and ail , ajl ,

and akl are the signals from the accelerometers that have their sensitive axes

along these unit vectors.

This acceleration vector can be integrated twice in order to determine

the change in the vehicle position. However, it is important to notice that

change in p°siti°n _ il f I ail dt + Jl I I ajl dt + kl f ] _i dt.

^ ^ ^

This is because the vehicle axes, il, Jl' and kl, are not fixed in space and

for this reason they cannot be brought out of the integration as is attempted

above.

The correct way to double integrate the acceleration vector is first to use

the direction cosines that relate the SI, vehicle fixed coordinates, to the $2

coordinates that are fixed in space and resolve the acceleration vector along

the fixed coordinates. Then the acceleration vector can be written as follows:

^ ^

a = a4pip + ajpjp + ak2k 2

^ ^

Now since i2, J2' and k 2 are fixed in space the unit vectors can be brought

outside the integration so that

5-3. Two-Degree-of-FreedomGyros

A two-degree-of-freedom gyro consists of a rotor supported by two gimbals

as shown in Fig. 5-9. This type of gyro can be mounted on a vehicle and used

to measure the vehicle orientation relative to some fixed coordinate system.

Ideally, the rotor spin axis direction remains unchanged even though the

vehicle rotates. Consequently, the angle between the two gimbals and the angle

between the outer gimbal and a reference direction on the vehicle both are func-

tions of vehicle orientation. These angles can be measured and the resulting
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Rotor_
Inner

Gimbai_

Outer
Gimbal_

t

Gyro

Case"---_

b--

Two-Degree-of-Freedom Gyro

Fig. 5-9



measurementsignals can be processed to determine the vehicle orientation.

The vehicle orientation will be described by a conventional set of three

Euler angles. The functions relating these Euler angles and the measuredgim-

bal angles are determined by the choice of the spin axis direction and the gim-

bal arrangement. Interestingly enough, these functions are muchmore compli-

cated for somespin axis-gimbal combinations than for others. Therefore, pru-

dent choice of the gyro arrangement can greatly reduce the computation that is

required to determine the vehicle orientation from the measuredgimbal angles.

Here this point will be demonstrated by comparing the nature of the gimbal
angles for six different combinations of spin axes and gimbals.

Next someof the factors involvedin the selection of gimbal arrangements
will be illustrated by an example. Instruments will be selected to determine

the orientation of a vehicle for which the roll and elevation angles are
restricted while the heading is unrestricted.
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Coordinate Systems

Two right-hand coordinate systems S1 and $2, introducted in Section 1-5,

will be used in this discussion. $2 is a fixed, reference system; S1 is the

vehicle coordinate system and it rotates in space with the vehicle. The Euler

angles _, e, and _ shown in Fig. 5-10 describe the vehicle orientation relative

........ _ be taken as upward _ i will be taken asto _he _ COO_U±L_L= system. J2 ......... i

the vehicle longitudinal axis. Then _, 0, and _ conveniently become heading,

elevation, and roll angles.

Gimbal Arransements

Fig. 5-11 shows six different spin-axis-gimbal arrangements. These six

combinations were generated by pointing the rotor spin axis along each of the

three coordinates of the fixed $2 coordinate system. For each of these spin

axis directions there are two ways to arrange the gimbals. This produces the

six combinations shown.

One angle that can be measured on the gimbals will be called the inner

angle (IA). This angle is between the planes of the inner and outer gimbals.

The sides of this angle are shown for each gimbal arrangement.
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J2 Jl

i. Rotate S1 through the
angle _ about j3.

J2

.

iI

Rotate SI through the

angle e about k I.

k2

k I i2

J2

\

Jl 3. Rotate SI through the
angle _ about iI.

--i I

k 2

_ -_i 2

k I

Definition of Euler Angles

Fig. 5-10
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The second angle that can be measured will be called the outer angle (OA).

This angle is between the plane of the outer gimbal and one of the axes of the

vehicle fixed SI coordinate system. The sides of this angle are shown for each

of the gimbal arrangements.

In Fig. 5-11 the cosines of the inner angle and the outer angle are listed

as functions of the Euler angles _, e, and _ for each gimbal arrangement. As

promised earlier these functions have a wide range of complexity.

The derivation of these expressions is shown in Appendix B.
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Gyro Selection

It will be assumed that two two-degree-of-freedom gyros must be selected

to measure the vehicle orientation by measuring _, e, and _.

The first elimination of gimbal arrangements can be made by discarding

those that are vulnerable to gimbal lock for the type of rotation anticipated.

For example, in many applications such as a land vehicle, a submarine, a

commercial airliner, and even a lunar roving vehicle, the elevation and roll

angles will never approach 90 ° . However, for these same applications the

heading angle can take on any values For these applications gimbal arrange-

ments i and 5 must be discarded because they will experience gimbal lock unless

heading angle is restricted. For other applications different restrictions on

vehicle rotation will cause different gimbal arrangements to be vulnerable to

gimbal lock.

Of the remaining four gimbal systems, apparently a_rangement 4 should be

selected as one of the two instruments needed for this job. The inner and

outer angles of the gimbals in arrangement 4 are direct measurements of the

Euler angles e and _

A second instrumenn must be chosen to determine the heading angle, _o

Arrangement 3 is of no use because its gimbal angles are Independent of _. Gim-

bal arrangements 2 and 6 remain. For these systems the cosines of the inner

angles are much simpler functions than the cosines of the outer angles. There-

fore, the measurement of one of these inner angles should be used. For arrange-

ment 2 and 6 the cosines of the inner angles are equally complex functions of

T, e, and _. Arrangement 6 will be arbitrarily selected to measure the heading

angle.



For arrangement 6

cos (IA) = cos _ sin e sin _ + sin _ cos (5-23)

The size of the inner angle (IA)is measured. _ and e are available from the

gyro that was selected with a vertical axis. In order to determine _ these known

angles must be used in the above equations so that it becomes

A = B sin _ + C cos (5-24)

where A, B, and C are knownconstants. Nowthis transcendental equation must

be solved for P. It seems that this solution might be difficult to instrument.

Neglectin$ the Roll An$1e,

At this point it is tempting to go back to (5-23) and make the approximation

that the roll angke, _, is zero. Certainly for many applications the roll angle

is small most of the time. This approximation causes (5-23) to become simply

cos (IA) = sin e sin _ (5-25)

The effects of this approximation will he examined for two specific cases which

will show that this approximation cannot be tolerated.

First consider the case where P = 0°, e = i0 °, and ¢ = i0 °.

cos (IA) = sin i0 °

Using (5-25) _ is computed as follows:

-I
computed = sin

-i
= sin

= 90 °

(cos (IA)/sin e)

(sin 10°/sin i0 °)

Even this mild i0 = roll angle caused a 90 ° error in the measure of _.

The second case to be considered is _ = 90 °, e = i0 °, and ¢ = i00.

Using (5-25)

cos (IA) = sin i0 ° cos i0 °

-i
computed = sin (cos (IA)/sin 6)

= 80 °
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From (5-23)



This time the error in the computation of _ is i0 °.

Apparently, approximating the roll angle as zero in (5-23) is an unsatis-

factory solution to this problem.

Roll Stabilized Directional Gyro

The requirement to solve the transcendental equation (5-25) can be avoided

by using a roll stabilized directional gyro. The outer gimbal of a roll sta-

bilized gyro is not mounted to the vehicle. Instead it is mounted in a third

gimbal that is in turn mounted on the vehicle. This is shown in Fig. 5-12.

This third gimbal is slaved to the roll angle measured by the vertical gyro

so that the plane of gimbal remains vertical. This is accomplished by using a

control loop to force the angle shown as Q in Fig. 5-12 always to be equal to

the measured value of 4.

Now the directional gyro actually measures the orientation of the third

gimbal rather than the orientation of the vehicle. The control loop described

above assures that _ is zero for the third gimbal. Fortunately, however, the

gimbal heading and elevation angles are exactly the same as those for the

vehicle. See Fig. 5-12. The fact that the roll angle is zero leads to the

following simple equation.

(5-26)
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Elevated Inner Gimbal Axis

Now just as things were beginning to look good another problem appears. If

the elevation angle, 8 is zero the inner angle will be zero regardless of the

size of the heading angle, T. Once again, the elusive heading angle has suc-

ceeded in hiding itself.

Remember that two gimbal arrangements, 2 and 6 were candidates for the task

of determining _. Arrangement 6 was arhitrarily chosen. Perhaps if arrangement

2 were mounted in a roll stabilized gimbal the present difficulty would go away.

Unfortunately, a quick check of Fig. 5-11 shows that arrangement 2 would

also be unable to provide an indication ofthe heading angle when the elevation

is zero. Using the inner angle of arrangement 2 leads to the same problem

experienced with arrangement 6. Using the outer angle is too complicated. There-

fore, there is no good reason to abandon the arbitrarily selected arrangement 6
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Third
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Vehicle--

Roll Stabilized Gyro

Fig. 5-12
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in favor of arrangement 2.

The correct solution to this current problem is to elevate the outer gim-

bal relative to the vehicle axis. In this way the undesirable singularity of

(5-26) can be shifted so that it will occur only if the vehicle is elevated to

an angle that is outside the expected operating range. Fig. 5-13 shows a roll

stabilized directional gyro with an elevated outer gimbal. If e + 90 ° is the
o

angle between the outer gimbal axis and the vehicle longitudinal axis and e is
g

the elevation angle for the third gimbal then

0= e -0
g o

cos (IA) -- sin 0 sin
g

cos (IA) = sin (e + e ) sin T
o

-i
= sin (cos (IA)/sin (e + e ) )

o

This last equation will not be indeterminate unless e goes to -Co. Since eo

will be selected outside the range of expected elevation values this arrange-

ment will successfully measure the heading angle.

Summa ry

Fig. 5-14 shows the two instruments that have been selected to measure the

orientation of a vehicle with restricted elevation and roll angles. The amount

of computation that must be performed on the measured angles is indicated.

5-4. Rate Gyros and Computational Platforms

One system that will determine the complete vehicle orientation -- heading,

elevation, and roll -- is a strapped down, computational platform. The strapped

down platform uses three single-degree-of-freedom rate gyros mounted on the

vehicle to measure the rotation of the vehicle about each of its own axes.

Before looking at the equations for the strapped down platform, it will be

beneficial to study the way in which a single-degree-of-freedom, rate gyro works.

The following discussion is found in reference i.
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/
Third gimbal plane

kept vertical

/ ^

iI

Roll Stabilized Directional Gyro with Elevated Inner Gimbal Axis

Fig. 5-13
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Single-degree-of-freedom gyros

The fundamental relationship describing the motion of a rotating wheel under

the influence of an external torque perpendicular to the axis of spin of the body

is

where

T=_xI_'
s

T = torque about the input axis

I = moment of inertia about the spin axiss

m' = angular velocity about the spin axis

= angular velocity about the precession axis

The angular momentum of the wheel is represented by

H= I m
s

so that

T=mxH

The relationship between the angular momentum vector, the torque vector,

and the precession vector may be seen in Fig. 5-15a.

A similar angular rate about the T-axis would produce a torque about the

precession axis. To avoid confusion about whether the input to the gyro is a

torque or an angular rate, the axes of a single-degree-of-freedom gyro are

usually labeled the spin axis or spin-reference axis (SRA); the input axis (IA);

and the precession or output axis (OA). These axes are shown on Fig. 5-15b.

In the single-degree-of-freedom gyro shown in Fig. 5-15b, the spinning

wheel with its set of spin bearings has only one additional degree of freedom

with respect to the gyro case. An angular rate _i about the input axis (IA)

will cause a precession torque about the output axis (OA). The torques opposing

any gyroscopic torque about the output axisare due to the inertia, viscous

damping, and spring-reaction torques acting on this axis. Thus, the sum of all

the torques acting on the OA is

T = Hm I = 1 8 + C8 + K8o

where ml is the rate about the IA, I is the inertia about the OA, C is theo

damping about the OA, K is the spring constant about the OA, and 8 is the

angular precession or rotation about the OA.



If the spring constant K is madelarge comparedwith the inertia and

damping, the gyro has the following characteristics:
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thus

HmI _ K8

8 _._ _i (5-27)K

or, the output angle is directly proportional to the input rate. Thus, the

gyro becomesa rate-measuring instrument. In this configuration, it is known

as a spring-restrained rate gyro. Equation (5-27) is exact for low frequencies,

but is in error near and above the resonant frequency determined by I and K.o

Someform of angular position pickoff, shown as signal generator (SG), may

be employed to provide an electrical output_ A direct visual output in the form

of a pointer may also be used, as in the commonturn-and-bank indicator employed

in aircraft. This type of gyro is commonlyused to provide a rate of damping

signal to stabilize an autopilot system. For this type of gyro, the common

range of input rates varies from a few degrees per minute to hundreds of degrees

per second, although in any one instrument the linearity and null errors of the

gyro would probably be from i to 5 percent of full-scale rate. The typical error

sources of this type of gyro are pickoff and spring nulls not exactly aligned,

unbalance of the rotor or gimbal, and dampingor other highly temperature-depen-
dent characterisnics.

Computational Platform

Fig. 5-10 shows that three Eulerangles, _, 8, and _, can be used to

describe the vehicle orientation. Three of the single-degree-of-freedom gyros

described above can be mounted on the LRVwith their input axes along the

vehicle axes so that they will measure P, Q, and R, the vehicle pitch, yaw, and

roll rates. The following equations give the rate of change of the Euler angles

as a function of P, Q, and R and the current values of the Euler angles.

= Q cos ¢ - R sin

$ = P + Q sin _ tan e + R cos _ tan 8

sin_ cos____
= Q c-_-_se+ R cose



The Euler angles can be determined by integrating these Euler angle rates.

block diagram in Fig. 5-16 illustrates the mechanization of these equations
that will generate a continuous measure of the vehicle orientation.

The
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5-5. Solar Sensors

Photosensitive devices can be used to determine the vehicle's heading angle

by measuring the direction to the sun. Here five different ways to instrument
this measurementwill be described and compared. The five systems that will be

examined are distinguished by the type of sensors used and the way in which the

sensors are mounted. The five arrangements are:

i. Single axis, wide field of view sensor fixed to the
vehicle.

2. Single axis, narrow field of view sensor, pivoted
on the vehicle.

3. Single axis, wide field of view sensor, fixed to a

level platform.

4. Single axis, narrow field of view sensor, pivoted on

a level platform.

5. Twoaxis, narrow field of view sensor, tracking the

solar line of sight.

The trade-off's that must be madein order to select the one system that

is best suited for the LRVapplication will be examined by asking the following

questions about each system.

i. Is a single axis or a two axis sensor required?
2. What is the required sensor field of view?

3. Howmuchcomputation is required?

4. Howmanymechanical gimbals must be controlled?

5. Must the value of the roll angle, _, be provided by
an external source?

6. Must the system be re-aimed at the sun if it is

temporarily shadowedby someobstacle?

Table 5-1 summarizes the results of this comparison.
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Rate Gyro
Signals

P

Q

R

Digital

Computer

I

Euler

_gles

_e

Strapped Down Platform

Fig. 5-16
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It will be assumed that the same type of sensor will be used to instrument

each of the five systems. This basic sensor will consist of a row of photo-

cells that are shielded from the sun by a reticle with a single slot as shown in

Fig. 5-17a. The signals from the photocells are a direct indication of the

angle between the line of the photocells and the projection of the sun line of

sight into the plane normal to the slit. This very simple device would measure

the same angle that is measured by the much more sophisticated sun aspect sen-

sors that are produced for aerospace applications. Whether the output signal

from the sensor is digital or analog is irrelevant to this current geometric

discussion.

For some of the systems that will be discussed sensors with a narrow field

of view will be adequate. In these cases a sensor like the one in Fig. 5-17a

can be used. Other systems will require that the sensor be able to measure

angles from 0 to 360 degrees. This can he accomplished by using an array of

sensors as shown in Fig. 5-17b. In the following discussion the array in Fig.

5-17b will be called one sensor with a 360 ° field of view.

The sensor shown in Fig. 5-17a measures the angle between the photocell

line and the projection of the solar direction into the plane normal to the

slit. This is a single axis sensor since only one angle is measured. If two

the sun into two planes that are normal to the slits in the two sensors then

this instrument will be called a two-axis sensor.

Solar Direction

^

A unit vector, S, along the direction toward the sun can be resolved in

the fixed $2 coordinate system and in the vehicle referenced SI coordinate sys-

tem.

^

For convenience let i2 be along theprojection into the horizontal plane

of the LOS from the vehicle to the sun. In this way the heading angle, T, will

be zero when the LRV is headed toward the sun.

If b is the elevation angle of the solar LOS above the local horizon then

^ ^ ^

S = cos b i 2 + sin b J2 (5-28)
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(a) Basic SunAspect Sensor

Field of View for
OneElement

(b) Sensor Array with 360° Field of View

Fig. 5-17
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Using the direction cosines that relate the $2 and SI coordinate systems shows

that the solar line of sight resolved along vehicle coordinates is

^ ^

S = (cos b cos e cos _ + sin b sin e) iI

+(cos b (-cos _ sin e cos _ + sin _ sin _) + sin b sin e

cos _) J l (5-29)

+(cos b (sin e cos _ sin _ + sin _ cos _) - sin b cos e

^

sin _) kI

System i: One Sensor Fixed to the Vehicle

The first arrangement to be examined will be one sensor fixed to the vehicle.

This approach requires that the sensor _ave a 360 ° field of view in order to

assure that the solar direction can always be measured.

Initially, it will be assumed that the sun aspect sensor will be strapped

down to the LRV with the reticle slit and the line of the photocells along two

of the vehicle axes. There are six.such.orientations and they are listed in

Table 5-2 along with the cosine of the angle that is measured for each orienta-

tion. Equation (5-29) was used to develop these expressions for the measured

angle cosines.

Let it be assumed that e and _ are m_a_u_d wiLu....................L_e ±nC±±LLOm_L=L uL

vertical gyro and that b, the elevation of the sun, is known from the lunar

ephemeris. Still the solution of one of these transcendental expressions is a

discouragingly complicated task. Unfo=tunately, though, one of these expressions

must be solved if a strapped down sun sensor is used to measure _.

The sensor has a 360 ° field of view. Therefore this system will not have

to be re-aimed at the sun if the line of sight is temproarily interrupted.

System 2: One Sensor Pivoted on the Vehicle

The second scheme is geometrically very similar to the first. A single axis,

narrow field of view sensor ismounted so that it can rotate about an axis normal

to the vehicle as shown in Fig. 5-18. This gimbaled sensor is pointed by a

tracking loop that uses the sensorsignals to keep it pointed at the solar plane.

The mechanical gimbal angle is the same as the angle measured by a strapped down
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Slit
Direction

Direction
of Line of
Photocells

Projection
Plane

3

4

5

i I

i I

Jl

Jl

kI

Jl

kI

kI

i I

i I

Jikl

Jikl

ilk I

ilk I

1131

Cosine
of Measured

Angle

sj

Sj 2 + Sk2

Sk

qSj + Sk2

Sk

2 + Sk2

S°

1

_Si2 + Sk2

S•

l

Si2 + Sj

S .

k I Jl ilJ i _Si2 2+ Sj

S. = cos b cos e cos _ + sin b sin e
i

S. = cos b [sin _ sin _ - cos _ sin e] + sin b cos 6 cos
3

Sk = cos b [sin e cos _ sin _ + sin _ cos _] - sin b cos e sin

Cosines of Angles Measured by Strap-Down Sensor

Table 5-2
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Tracking loop rotates sensor
about Jl to track solar plane.

S, Solar Direction

/
Measured

angle

\
\

ProjeGtion of S -_

into ilk I plane.

One Sensor Pivoted on Vehicle

Fig. 5-18



^ ^

sensor with the slit along jl and the photocell line along il, which is number

4 in Table 5-2. Therefore, the solution of a complicated, transcendental func-

tion of 8, _, b, and P is still required in order to determine _. If the sensor

is shadowed it must be re-aimed at the sun.
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System 3: One Sensor Fixed to a Level Platform

One way to avoid the solution of the transcendental equation to get _ is to

abandon the idea of mounting the sensor tothe vehicle and instead mount it on

a level platform for which 8 and _ are zero and for which _ is the same as the

vehicle heading angle. Fig. 5-19 shows such an arrangement.

It is assumed that the gimbal angles are somehow set so that the platform
^

is level, that is, parallel to the i2k 2 plane. The discussion of how this can

be done will be temporarily postponed, ltis not immediately obvious that the

constraint that the platform be level will cause the platform heading angle to

be the same as the vehicle heading angle. That this is true will now be demon-

strated.

^

The vehicle heading angle is the angle between i2 and the projection of
^ ^ ^

iI into the i2k 2 plane This projection will be called p.

^ ^ ^ ^ ^
I

p = (iI • i2) i2 + (iI • k2) k 2

^ ^ ^

One edge of the platform in Fig. 5-19 is along J2 x (ilxJ2). This direc-

tion will be considered for the forward direction for the platform. If these

cross products are evaluatedj

^ ^ ^ ^ ^ ^

J2 x (iI x j2 ) = (iI • i2) i2 + (iI • k2) k 2

It is now seen that the platform forward direction along this edge of the

platform is the same as the projection of the vehicle forward axis into the
^ ^

i2k 2 level plane. Therefore, the platform heading angle is the same as the

vehicle heading angle.

The sensor shown in Fig. 5-19 will directly measure the angle between plat-

form forward axis and the projection of the solar line of sight into the plane

of the level platform. This means that the sensors directly measure the plat-

form heading angle and consequently directly measure the vehicle heading angle.
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Level Platform Parallel to i2k2 plane

^

iI

^ ^

x (ii × jz)

Single Axis Sensor Fixed on a Level Platform

Fig. 5-19



Mounting the sensor on the level platform has eliminated the computation

that was required to determine _ from the output of a strapped downsensor.

In fact, the gimbal system actually serves as a sort of analog angle computer.

Since this system uses a sensor with a 360° field of view it will not

need to be re-aimed if the reticle is temporarily shadowed.
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System 4: One Sensor Pivoted on a Level Platform

The fourth way to use a solar sensor to determine the LRV heading angle is

to mount a single axis, narrow field of view sensor on a level platform so that

it can pivot about an axis normal to the platform. Then a closed tracking loop

can use the signals from the sensor to keep it pointed at the sun. This is a

combination of the tracking loop from system 2 and the level platform of system

3. As in system 3 the vehicle heading angle is measured directly. For this

system the heading angle is indicated by the angle of the gimbal driven by the

tracking loop.

If the sensor used in this system is temporarily shadowed it will have to

be re-aimed at the sun so that the tracking loop can re-acquire its solar target.

Level Platform Mechanization

for system 3 and 4. The first approach is to simply hand a plumb bob on the

platform. The bob would level the gimbaled platform. This approach suffers

from the disadvantage that the platform would swing whenever the vehicle accele-

rated either laterally or longitudinally.

A second approach eliminates this difficulty. Closed loop control systems

can be used to slave the gimbal angles to the elevation and roll angles measured

on a vertical gyro. The outer gimbal angle should be maintained equal to the

measured value of roll; the inner gimbal angle should be forced to be equal to

the measured value of elevation. Such a control loop would cause the platform

to remain level as is required.

System 5: Two Sensors Mounted on a Gimbaled Platform that Tracks the Solar Line

of Sight

Each of the systems previously discussed used only one sensor and either
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measured or tracked the plane defined b_ the solar line of sight and some

reference direction, either the local vertical or the direction normal to the
vehicle chassis. This final schemeis different in that two sensors are used

and the solar direction is tracked rather than the solar plane. Here two sen-

sors or equivalently one two axis sensor is mounted on a two-degree-of-freedom

platform that is supported by an inner and an outer gimbal.

Oneway to arrange the gimbals isshown in Fig. 5-20. If the outer gim-

bal axis were normal to the vehicle chassis the system would be vulnerable to

gimbal lock when the sun was nearly overhead. The arrangement shownin Fig.

5-20 has the outer gimbal axis parallel to the chassis so that the system does

not experience gimbal lock difficulties_when the sun is overhead. For this

system gimbal lock can occur only when the sun is near the horizon.

For this arrangement the gimbal can he used to measure the angle between
^

the solar line of sight and iI. The cosine of this angle is as follows:

cos (Inner Angle) = cos b cos e cos _ + sin b sin e

No other arrangement of two gimbals can produce a gimbal angle that is a simpler

function than this one.

Given b and e the inner angle can be measured and the above linear equation

for the cosine of T can be solved to determine T.

be re-aimed at the sun if the sensors were temporarily shadowed.

Summary

The following five techniques for using solar sensors to determine the

vehicle heading angle have been described.

i. Single axis, wide field of view sensor fixed to

vehicle.

2. Single axis, narrow field of view sensor, pivoted

on vehicle.

3. Single axis, wide field of view sensor, fixed to

level platform.

4. Single axis, narrow field of view sensor, pivoted

on the level platform.

5. Two axis, narrow field of view sensor, tracking the

solar line of sight.
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^

S, Solar Direction

Two Sensors Tracking Solar Line of Sight

Fig. 5-20
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The first system is mechanically simple because the sensor is fixed to

the vehicle. However, the angles that can be measuredby these strapped down

sensors are complicated, transcendental functions of P, 8, _, and b. Extracting
from the sensor output would require considerable computation.

The second system is comparable to the first in that it too would require

the samecomputations to determine _ from the measuredangle. Here, however,

the requirement for a wide field of view sensor is eliminated by providing a
mechanical tracking loop that enables the narrow field of view sensor to track

the solar plane.

System 3 fixes the sensor to a level platform and thereby eliminates the

computation that was required to determine P from the sensor signals. Actually

the computation task has been traded for the new problem of instrumenting a
gimbaled level platform.

System 4 is comparable to system 3. Here too the heading angle is measured
directly. Now, however, a narrow field of view sensor is used rather than a

wide field of view sensor. A tracking loop is required to keep the sensor
pointed at the solar plane.

System 5 is distinguished from the others in that it does not require know-

ledge of the roll angle, _, from an external source. It is the only system

that uses a two-axis sensor. The cosine of the measuredangle is linearly

r_l_t_d to th_ eo_in_ of • _o that the computational requirements are not as

extreme as they were for systems 1 and 2.

Some of the features of these five systems are compared in Table 5-1.

5-6. Pendulous Inclinometer

The most obvious method for determining the vertical is with a pendulous

inclinometer. A two-degree-of-freedom pendulum can be used to measure the same

roll and elevation angles that are measured by a two-degree-of-freedom vertical

gyro. The attractive features of a pendulum are its light weight and its simpli-

city. However, the pendulous inclinometer suffers from the essential disadvantage

that it swings when the LRV accelerates either forward or laterally.

The important question is "Howdoes this swinging affect navigation accuracy?"

Some feel for the answer to this question is provided by the following discussion.
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Figure 5-21 shows a pendulummountedon the LRV.
^

ration along iI of the bob is

aB -- a - d6

The force on the b_b along iI is

F = mg_ + BE

For small _ the accele-

where 8 is a measure of the pendulum damping. Consequently,

mg6 + 8_ = ma - md_

Using Laplace Transforms

a(s) i
6(s) = --

g 2
s-i--+ 8-ss+ 1
g/d mg

If the damping constant, 8, is set at 1.41fm_ so that the damping ratio is

0.707 then the deflection caused by a step of acceleration is

a -707 V g/d t

6(t) --_ [ i - 1.414e cos .707_ t]

For a i0 cm. pendulum and for g = 162 cm/sec 2

of g/d is 4.03 rad/sec. Then

on the lunar surface the value

-2.84t

6(t) = _ [ 1 - 1.414 e cos 2.84 t] (5-30)
g

If the LRV starts from zero speed and accelerates with constant acceleration

to some final speed then the dumation of the acceleration and the distance

covered while accelerating are given by (5-31) and (5-32).

T(sec) = 0.171 v/c (5-31)

where

-5 v2
S(km) = 2.38 x 10 -- (5-32)

c

v = LRV final speed in km./hr.

c = ratio of the LRV acceleration to the lunar surface

gravity.
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Pendulum Mounted on the LRV

Fig. 5-21
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For v > i0 km/hr and c < i, T is greater than or equal to 1.71 seconds.

sequently, (5-30) says that for most of the acceleration period _ can be

Con-

closely approximated as a/g radians.

Assume that the acceleration and velocity are in the horizontal plane.

The swinging pendulum will erroneously_indicate that the LRV is tilted _ radians

relative to the vertical. The resulting dead reckoning navigation errors will

be

horizontal error = S (i - cos_)

vertical error = S sin_

Since _ will be a small angle the first two terms of the cosine series will be

used to approximate cos_ and the first term of the sine series will be used to

approximate sin_. Then

horizontal error =_ S
g2

i i v 2

7-)(=7o)
g_

I v2c

4 g

4^-3 2
= 1.19 x ±u cv (me "c_r_j

vertical error = S a
g

iv2 a

2 a g

i v 2

2 g

= 2.38 x 10 -3 v 2 (meters)

where c and v are as defined above.

These equations say that accelerating at 1/5 lunar gravity to 15 km/hr

generates 0.0535 meters horizontal error and 0.536 meters vertical error.



89

5.7. Sensor Combinations for Determining Orientation

This chapter has discussed several individual instruments that can be used

in a dead reckoning navigation system to help measure the vehicle orientation.

Table 5.3 lists eight potential ways that these instruments might be combined to

determine the LRV orientation.
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Instruments

i. One gyro

2. One sun sensor

3. Two sun sensors

4. Two gyros

5. One gyro and an
inclinometer

6. Sun sensor and vertical

gyro

7. Sun sensor and inclin-

ometer

. Computational platform

with three rate gyros

fixed to the LRV

Comments

None of these will work exactly because

there is not enough information in one
reference direction to define H.

Errors that are a function of the LRV

elevation and roll angles will occur if

one of these systems are used.

Permits determination of vehicle's

complete orientation. Gimbal arrange-

ments have been investigated.

Geometrically equivalent to two gyro

system. Inclinometer replaces verti-

cal gyro.

Permits determination of vehicle's

complete orientation. Mechanization

has been investigated.

Geometrically equivalent to sun sensor

and vertical gyro system. Inclinometer

replaces vertical gyro.

Digital computation requirements are

high. Equations for mechanization are

in Section 5.4.

Heading Angle Determination

Table 5-3
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CHAPTER6

CELESTIALANDSATELLITEPOSITIONFIX SCHEMES

6-1. Introduction

A trans-lunar excursion is planned for the DLRV. This explorative journey

will take about one year and cover about i000 km. Astronauts will rendezvous

with the LRVafter it finishes its trip across the moon. In order to provide

the navigation accuracy required for this DLRVmission, periodic position fixes

will be needed to update the dead reckoning navigator.

Three possible techniques for position fixing are:

i. Celestial sightings;

2. Satellite sightings;

3. Landmarksightings.

Each of these broad categories of position fixing techniques includes several

specific position fixing schemes. What follows is a description and analysis

of somecelestial and satelliteposition fix techniques. Techniques based on

landmark sightings will be discussed in Chapter 7.

In this description and comparison of several celestial and satel-

±ite position fix schemesthe assumption will be madethat the moonis a smooth

sphere. This assumption will significantly simplify the geometry but will not

obscure the inherent, geometric advantages and difficulties of the various

position fix concepts. Therefore, a meaningful comparison of the position fix

techniques can be madeunder the assumption that the moonis a smooth sphere.

Once the comparison of the schemeshas indicated which position fix con-

cepts are best suited to the LRVapplication then the smooth sphere assumption

can be removedand the selected position fix concepts can be examined very pre-
cisely.

An important first question in the comparison of lunar position fixing

techniques is whether a satisfactory position fix can be established from celes-

tial sightings. The use of celestial sightings is relatively attractive when

comparedwith the use of a navigational satellite simply because it avoids the

requirements for having a navigational satellite in lunar orbit.
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Two schemesfor establishing a position fix based on celestial sightings

will be examinedhere. Oneschemeuses the measurementof angles between a land-
mark on the earth and two different stellar directions. The second uses the

measurementof angles between the local vertical and two different stellar direc-
tions.

TRANSIT,a network of satellites for navigation, has been developed for

the U. S. Navy. This navigation satellite system is operational and it does

provide precise position fix information to ships at sea. The success of this

system suggests that using an artificial satellite in lunar orbit should be

considered for the LRVposition fixing requirement.

There are several ways to establish a position fix by observing a naviga-

tional satellite for which the orbital parameters are known. The satellite's

orbital parameters include enough information to completely define that satellite's

position and velocity at any instant of time. Any schemethat determines the

LRVposition relative to this satellite.of known position will obviously provide
a position fix for the LRV.

Three specific schemeswill be described that assumethat the orbital

parameters are known and available. Theseschemesare based on measurementof:

I. LRV to satellite range

2. LRVto satellite range rate

3. Angles provided by satellite tracking

The second schemeis the one used for the TRANSITsystem.

6-2. Sensitivity Analysis Technique

A mathematical technique described in Battin's Astronautical Guidance will

be used here to develop expressions that relate the accuracy of a position fix

to the position fix geometry andthe precision with which the basic measurements

are made. Obviously these equations will help in the selection of advantageous

position fix schemes.

In this first analysis the following assumptions will be made:

i. The moon is a smooth sphere.
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2. The LRVclock is perfect so that all
measurementsare madeat known instants

of time.

3. The lunar ephemeris is known exactly.

Since the moonis assumedto be spherical, the length of r, the vector from

the moon's center to the LRVposition, is assumedto be a known constant. Two
more parameters are needed to define the direction of _ and thus complete the

description of the LRVposition. Consequently, two measurementsmust be made to

establish a position fix. Whencelestial sightings are used these two measure-

ments are celestial angles. Later the use of a navigation satellite for position

fixing is considered. Then the two measurementsare either angle, range, or

range rate measurements. In any case the two measurementswill be namedql and

q2"

Clearly the values of ql and q2 dependon r. It will be shown that if the
LRVmovesabout a reference point in a region that is small enoughso that all

changes can be taken as first order differentials, that is, small enough so that

the relation between the q's and r can be linearized then

(6-1)

m

Ar is the deviation of _ from the reference value ro," Aq is the deviation

of q from the reference value qo"

Ar= r- r
o

Aql = ql- qlO (6-2)

Aq2 = q2 - q20

Equation (6-1) shows that each measurement establishes the component of

Ar along some vector, either h I or h 2.

Since IA_I is assumed to be small relative to I_I it can be further assumed

that Ar is in a plane normal to r and consequently AT, _i' and h 2 can be resolved^ O

along two normal coordinates, £ and m in that plane.
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Then

AqI

Aq2

^ ^

AT = Ar££ + Armm

^

_i = hl_ + hlmm

^

h 2 = h2z£ + h2mm

hl_ him

h2£ h2m

Ar_

Ar m

(6-3)

or

The inverse relation is

Aq = HAr

Ar£

Ar m

i

hl£h2m - hlmh2_

or

Aq I

Aq 2

(6-4)

(6-5)

AT = H-1Aq (6-6)

Thus far the H matrix has been used only to relate differential changes in

However, this relation is closely connected to the sensitivity of position fixing

accuracy to measurement errors.

In the following equations primed variables represent measured or estimated

values.

r=r +Ar
o

r' = r + Ar'
o

e = Ar' - Ar = r' - r
r

q = qo + Aq

q' = qo + Aq'

-. e = Aq' - Aq = q' - q
q
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If AT' = H-IAq ' as suggested by (6-6) then

e = Ar' - _r
r

-i -i --
= H (Aq'- A_) = H e (6-7)

q

Looking back it is seen that the H matrix determined for (6-3) is useful

because it is later used in (6-7) to relate measurement errors and position fix

error.

The magnitude of the position fix error vector is simply the square root of

i_r -- T -- -- T (H-I) T H-Iv12 = er er = eq q

T
If (H-I) H-lis denoted by the matrix B as

then

TH-I(H-I ) =

bll b12

b21 b22

l_rl -- T -- -- T H-I T i --2 = e e =e ( ) H- e
r r q q

= leql eq2)

b_ b_
J.J_ J_/

b21 b22

e_

-Ij_

eq 2

e 2 + e2 + (b]2+b e e=bll q b22 q 21 )
ql q2

If e and e
ql q2

ler! 2 is

are independent random variables then the expected value of

bll [eql b22

\

Taking the square root of both sides of the above equation yields

RMS [lerl ]= {bll RMS 2 [eql ] + b22 RMS 2 [eq2]} 1/2

This last equation gives the root mean square of the position fix error in

terms of the RMS values of the measurement errors and the position fix geometry.

This expression will be valuable for the comparison of various position fixing

schemes.



Since H is only a two by two matrix, bll and b22 are easily determined:

96

H

hl£ him

h2£ h2m

H-I

h2m -him

-h2£ hl£

D

[H-I ]T H-I i=V
h2m -h2£

-him hl£

h2m -hlm

-h2£ hl£

where

bll = (h_z + hp2m) / D2

b22-- (h_z + h_m ) / D2

D = hl£ h2m - h2£ him

techniques will be compared by examining the H matrix for each of the schemes.

6-3. Celestial Position Fix Scheme I - Earth Landmark and Two Stellar Directions

The angle that a navigator can observebetween a known stellar direction

and a known landmark on a nearbyplanet establishes a conical locus of his posi-

tion in space. By measuring the angle between the same landmark and a second

known stellar direction the navigator can establish a second conical locus for

his position. These loci are shownin Fig. 6_i. Now the navigator knows that

he must be located at the mutual intersection of these two cones and the lunar

sphere. There will be at least two such mutual intersections. A priori infor-

mation can be used to select which intersection is the actual LRV location.
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Sensitivity Analysis

The measured angle between the landmark on a nearby planet and a stellar

direction is most sensitive to motion of the LRV when the nearby landmark is

nearly above the LRV and the LRV traw_is inthe plane defined by the stellar

direction and the line from the center of the moon to the landmark. Unfortunately,

even for this case the geometric sensitivity of this sighting is as follows:

Aq =
R-r

where Ar is a small change in the LRV position vector, Aq is the corresponding

small change in the measured angle, r is the radius of the moon, and R is the

distance from the center of the moon to the landmark.

If R is taken as 385 x 103 km, the distance from the center of the moon to

the earth; and r is taken as 1738 km, the mean radius of the moon, then

Aq = 2.6 x 10-6iAri

This means that if the LRV moved 5 km, the resulting change in the basic angles

that are measured for this scheme wouldbe less than 0.8 x 10-3 degrees. Con-

versely, a measurement error of only 0.8 x 10 -3 degree would cause a position

fix error of at least 5 km.

This concept is not attractive for the LRV application because the position

fix accuracy is too sensitive to small measurement errors.

The relation between the measured angles and changes in the LRV position is

shown below:

or

sin YI c°s_l

P sin ql

siny 2 cos_ 2

P sin q2

i R

P sin ql (sinYl sinai - _ cos i sinB)

I R

P sin q2 (sin_2 sina2 - _ cos
2 sinB)

Ar k

Ar m

i

R

siny I sinY2 sin (_2-_i) + _ sin_ (cosql sinY2 cos_ 2 - cosq2 sinYl cos_l)
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sinql (sinYl sin_ 2 - _ cosq2 sin8)

- sinql siny 2 cose2

R
-P sinq2 sinYl sin_ I - _ cosql sin8)

P sinq 2 siny I coseI

AqI

Aq2

The derivation of these equations is shownin Appendix C. The meaning of

the variables in these equations are illustrated in Fig. 6-2.

Position Fix Computation

The following three simultaneous equations can be solved for the LRV coordi-

nates. The angles in these equations are defined in Fig. 6-3. These equations

are derived in Appendix D.

 E)2(1
g

2 yE) 2 (l_cOSLlSin2 _ 2(x - - cOSLlCOS^isecql ) + (y - isecql ) +

2 2 2 2 2

(Z_ZE) 2 (l_sinLlsecql)+(X_XE) (y_yE)sin21I(2_cosL1secql)_(y_yg) (z_zE)sin2Llsinllsecq I _

2
(Z-ZE) (X-XE)sin2LlCOSllsecql = 0

2 2 2 2 2 2
(X_XE) 2 (l_cosL2cos12secq2)+(y_yE) 2 (l_cosL2sin12secq2) +

2 2 2 2 2
(z-z E) (l-sinL2secq2)+(x-x E) (y-yE)sin12(2-cos12secq 2) -

2 2

(y-yE) (Z-ZE)sin2L2sin12secq2-(Z-ZE) (X-XE)sin2L2cos12secq2 = 0

where

x2+ y2+ z2= r 2

xE = R cosX E cos L E

YE = R sinl E cos LE

zE = R sin L E
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Here x, y, and z form a lunar coordinate system with its origin at the moon's

center. The z axis passes through the north pole as shownin Fig. 6-3. The
x and y axes are in the equatorial plane.

6.4 Celestial Position Fix SchemeII - Local Vertical and TwoStellar Directions

In Fig. 6-4 it is shownthat a navigator can establish a circular locus of

position on the spherical lunar surface by measuring the angle between the

local vertical and a knownstellar direction. A second, similar locus of posi-
tion can be generated by measuring the angle between the local vertical and a

second known stellar direction (see Fig. 6-5). The LRV location is at one of

the intersections of the two circular loci. The navigator uses the approximate
LRVposition provided by the dead reckoning system to select the correct inter-
section.

Sensitivity Analysis

The relation between changes in the LRV position to changes in the measured

angles is shown below. The variables are defined in Fig. 6-6. The derivation

is in Appendix C.

or

Ar£

Ar m

r 1

I--r ° iJ- -- cose -sine
t r

r

.i-r oir cote -r csce

t

Ar£

Ar m

Aq 1

Aq 2

However,

i_" i 2 = (Arg) 2 + (Arm) 2

= (-rAql)2 + (r cote Aql - r csc_ - Aq2)2

= 2 + CSC2e 2 _ 2 cote CSCe Aql Aq2 )IA_i 2 r 2 (csc2e Aq I Aq 2
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If eql and eq2 are independent randomvariables with equal RMSvalue, then

E (Aql Aq2) = 0

RMS(Aql) = RMS(Aq2) _ RMS(Aq)

Therefore, the RMSvalue of IA_I is

106

RMS(IA_I) = JE[r2(csc2_Aql2 + csc2eAq2- 2 cote csce Aql Aq2)]

= /_r csc2_ RMS (Aq)

This is minimized by selecting s
^i s_, i.e., e = 90°; then

RMS ([AT[) = A_-r RMS (Aq)

The radius of the moon is 1738 km.

RMS (JAr[) = 2460 km x RMS (Aq)

An error in angle measurement, Aq, of 0.05 ° would give a position fix error, A_,

of 1.5 km.

Tile most serious problem encountered in _rying to make the required measure-

ments of the angles between the stellar directions and the geometric vertical is

that the local vertical indicated by the gravity sensitive device will not be

the same as the geometric vertical. Reference 4 indicates that the nominal 30

value of this vertical anomaly is 0.05 ° , which means that position fix error so

caused would be 1.5 km.

Another feature of this position fixing concept should be mentioned. Any

attempt to extend this concept and use it to estimate the altitude of the LRV on

a non,spherical moon will fail because the angles measured are completely insen-

sitive to the radial distance of the LRV from the center of the moon.

Position Fix Computation

The following equations for the LRV coordinates are derived in Appendix D.

The variables used here are shown in Fig. 6-5. The solution of these two equa-

tions for % and L give the LRV position.
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-I
%2- %1= cos

cosql - sinL I sin L -1
( )+ cos

cosL I cosL

cosq2 - sinL 2 sinL
(

cosL 2 cosL

-i cosql- sinL I sinL

% = %1 + cos ( cosL I cosL )

6-5. Navigation Satellite Scheme I - LRV to Satellite Renge

If the moon is assumed to be a smooth sphere, then two range measurements

made at two different times are sufficient to determine the LRV position. Each

measurement of the distance from the LRV to the satellite establishes a circular

locus on the lunar surface. These circles have two intersections, one of which

is the measured LRV position. The estimate of the LRV position provided by the

dead reckoning navigator is used to select the intersection that is the LRV loca-

tion.

For this position fixing concept the measured parameters, ql and q2' are

the ranges measured from the LRV to the satellite at two different instants of

time.

Sensitivity Analysis

The equation relates changes in the LRV position to changes in the measured

ranges as shown below. The meanings of the variables are illustrated in Fig. 6-7.

or

Aq I

Aq 2

cos E1 o

cos E2 cos_ cos E 2 sins

sec E1 o I

(
-cot E2 cos_ cos E 2 sins ]

Ar k

Ar
m

Ark

Ar
m

The derivations of these equations are in Appendix E, Section E-I.



108

RI P1

s2
_2

\

\

\

x

\

\
\

\

(a)

/

ql

]

0 -_---aI --_I

(b)

s2 I

(c)

LRV to Satellite Range

Fig. 6-7



Position Fix Computation

The equations of the position fix for this scheme are shown below.

defines the variables that are in these equations.
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Fig. 6-8

-I c°sSl-sinLlsinL -i c°sB2-sinL2sinL

_2 - _i = cos + cos
cosL 1 cosL cosL 2 cosL

whe re

cos81 =

-i c°sBl-sinLlsinL

= _i + cos
cosL 1 cosL

r2+(r+Rl)2-ql2

2r (r+Rl)

r2+(r+R2)2-q22

c°sB2 = 2r (r+R2)

The LRV position on the lunar surface can be determined by solving these equations

for _ and L, the LRV longitude and latitude.

The derivation of these equations is shown in Appendix F, Section F-I.

6-6. Navigation Satellite Scheme II - LRV to Satellite Range Rate

The TRANSIT navigation system uses range rate measurements made with a doppler

radar. It is possible to discuss this navigation scheme by deriving equations

for the position fix in terms of the doppler beat frequency. However, it is just

as easy to look at this navigation concept in terms of the geometric parameters

involved. This latter approach is more consistent with the descriptions that

have been given here for other position fixing schemes. Fig. 6-9 shows the

scheme.

Fig. 6-10 shows the satellite a short time before the time of its closest

approach to the LRV. At the time when the navigator detects a silent beat on

doppler radar, it is the time that the line of sight to the satellite perpendicu-

lar to the satellite path. Let that time be t and the distance from LRV to the
o

satellite at t be R ; then the value of R can be calculated if we know the
o o o

second derivative of range R at t when the range vector is perpendicular to
o

satellite's orbit.
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,°

The relation between R and R at t -- t
o o

is (see Appendix E, Section E-2).

V 2
R = .°

o R It= t
o

Since it is assumed that the satellite orbital parameters are known, the

position and velocity of the satellite at t is assumed to be known. Therefore,
o

the last equation establishes a circular locus of position of radius R for the
o

LRV. The plane of this circle contains the position of the satellite at t and
o

is normal to the satellite trajectory at this point. This circular locus of

position intersects the lunar surface at two points, one of which is the mea-

sured LRV position. Information from the dead reckoning navigator is used to

select the intersection that is the LRV position.

Sensitivity Analysis

An imperfection, a bias, in the doppler radar will cause the measured range

rate, R', to differ from the actual range rate.

The effect of AR will cause an error in the radius of the locus of position.

er = No [see 3 (_) - i ]

The detailed derivations of the equations are in Appendix E, Section E-2.

If the satellite orbital radius is 1838 km, i00 km above the lunar surface,

then V = 8250 km/sec. Reference 4 gives 20 km/hr, as the nominal three sigma

bias for doppler measurements of satellite range rate. If these numbers are used

with an assumed value of 200 km for R , the range from the satellite to the LRV,
o

then the circular locus of position is erroneously shifted 0.485 km. The error

in the estimation of the locus of position radius is only 0.017 km.

This arbitrary selected example indicates that this scheme can be used to

determine the LRV position relative to the satellite with greater accuracy than

is offered by either of the celestial sighting schemes.



Position Fix Computation
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where x', y', and z

The equations of position fix for this scheme are derived in Appendix F,

Section F-2, and repeated below.

x = x' sina + y' cosa cosb + z' sina cosb

y = -x' cosa + y' sina cosb + z' sina sin b

z = -y' sinb + z' cosb

!
are solved from the following equations

{x' + R cosL cos(% s + a)} 2 + {z' - R[cosL sinb sin (%s + a) + sinL
S S S

y' = R [cosL cosb sin (% + a) - sinL sinb]
6 S S

x,2 + y,2 + z,2 = r2

cosb]} 2 = R 2
O

Here x, y, and z are the same lunar coordinates that were defined in Section

6-3. The x' ', y , and z axes are so defined that y' is in the direction of the

satellite's velocity, x' is perpendicula_ to y' and in the xy plane, z' is per-

pendicular to both x' and y' in accordance with right-hand rule. (See Fig. 6-11).

6-7. Navigation Satellite Scheme III - Angles Between Line of Sight (LOS) and
Local Vertical

Position fixing schemes that use angle tracking of a navigational satellite

are geometrically related to the concepts discussed under celestial sightings.

Now the artificial lunar satellite serves as a very close-by celestial neighbor.

The closeness of this new "celestial" body causes some of the angles defined by

its position to be more sensitive to theLRV position than angles defined by the

position of other celestial bodies. In thisrespect the satellite is superior

to the sun, earth, and other planets as a celestial reference.

There are at least two ways to establish a position fix by angle tracking

a satellite as it passes overhead.
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i. Measure at two instants the angle between the local
vertical and the LOSfrom the LRVto the satellite.

2. Measure at two instants the angle between a known
stellar direction and the LOSfrom the LRVto the
satellite.

Either of these sets of measurementswill provide a position fix relative

to the known satellite position. The position fix established by each of these

schemeshas a sensitivity to measurementerrors that is characteristic of the

geometry of the particular angles measured. The method of establishing a posi-

tion fix and its sensitivity to measurementerrors for both of the angle tracking

schemeswill be examinedbelow. The first schemeis described in this section;
the second schemewill be described in Section 6-8.

Measuring the angle between the local vertical and the LOSfrom the LRVto

the satellite establishes a circular locus of position on the lunar surface. Two

angle-measurements at two different times during the samesatellite pass provides

two different circular locus of position (Fig. 6-12). These two circles have two

intersections. The estimated LRVposition is at the intersection selected by
dead reckoning data.

Sensitivity Analysis

The relation between changes in the LRV position and changes in the angles

measured for this scheme is also developed in Appendix E, Section E-3, and

repeated below

or

Aq I

Aq

RI 1 ] Ar k
P_IIc°tql sinBl- r o

R2
COS _(-- cotq 2 sinB 2- _)r

P12

PI 2

RI c°tql sinBl - --r

-PI 2 cots

P12

R1 c°sql sinBl r

sin_ (p_ i)c°tq2 sinB2- r

P22

sin_(R2 c°tq2 sinB2 - P22)r-

A r
m

Aq I

gq 2
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The meaning of the variables are illustrated in Fig. 6-13.

Position Fix Computation

The equations of position fix are derived in Appendix F, Section F-3, and

repeated below:

_ = (cos_ 1 - sinL 1 sinL -i
%2 %1 c°s-i cosL 1 cosL ) + cos

cos_ 2 - sinL 2 sinL
( )

cosL 2 cosL

-I (c°s_l - sinLl sinL= _ + cos )
1 cosL 1 cosL

The meaning of the variables are shown in Fig. 6-12.

These two equations can be solved for X and L, the LRV's lunar longitude and

latitude.

6-8. Navigation Satellite Scheme IV - Angles Between Satellite LOS and a Stellar

Direction

tion and the LOS from the LRV to two different positions of a satellite is the

scheme that is geometrically similar to the celestial fix that uses an earth

landmark and two stellar directions. The navigation satellite replaces the earth

landmark. The relatively short distance between the LRV and the satellite causes

the desirable increase in sensitivity of measured angle to the LRV position.

The angle measured between a stellar direction and the direction to a

satellite establishes in space a conical locus of position. A second, similar

locus of position for the LRV can be established by measuring the angle between

the same stellar direction and the direction to the satellite at a later time

during the same pass. The computed LRV position is at one of the mutual inter-

sections of these two cones and the lunar sphere. The proper intersection is

selected by a priori information. The scheme is shown in Fig. 6-14.
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Sensitivity Analysis

The relation between changes in the LRV position and changes in the angles

measured is developed in Appendix E, Section E-4, and repeated below. The

meaning of the variables is illustrated in Fig. 6-15.

Aq I

Aq 2

i c°SElC°Sqlsin_l

Plsinql'(siny+c°SElC°SqlC°S=l) Plsinql

i

P2s inq 2 (siny+c°s E2 c°sq 2 c°se 2 )

cosE2cosq2cose 2

P2sinq2

Ar k

Ar
m

(

or

, Ar k ]

Ar I _-

• m ) siny (cosE2cosq2sin_2-cOSElCOSq isin_l)

PlsinqlcosElcosq2sin_2

[-Plsinql(siny+cosE2cosq2cosa 2)

-P2sinq2cosElcosqlsina I

P2sinq2 (siny+cOSElCOSqlsina I)

Aq I

Aq

Position Fix Computation

The equations for positlon fix are derived in Appendix F, Section F-4, and

repeated below.

x--x' sin_ + y' sinL cos% + z' cosL cos_
S S S S S

y = -x' cos% + y' sinL sini + z' cosL sinX
S S S S S

z =-y' cosL + z' sinL
s s

where x', y' and z', are solved from the followin_ equations°
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{x' - (r + R I) cosL 1 sin (I s - 11)}2

+ {y' - (r + R l)[cosL I sinL s cos (I s - 11) - sinL I cosLs]}2

= {z' - (r + R I) [cosL I cosL s cos (I s - 11) + sinL 1 sinLs]}2tan2ql

{x' - (r + R 2) cosL 2 sin (I s - 12)}2

+ {y' - (r + R2)[cosL 2 sinLs cos (I s - 11) - sinL 2 cosLs]}2

= {z' - (r + R2)[cosL 2 cosL cos (_ - _2 ) + sinL 2 sinLs]}2tan2q2S S

2 2
x_ + y2' + z ' = r

Here x, y, and z are the same lunar coordinates that were defined in Section 6-3.

X v v v, y , and z are so defined that the z'-axis is directed along the stellar

direction; the x'-axis is perpendicular to z' and in the xy plane; the y'-axis

is perpendicular to both x' and y' in accordance with the ri_ht-hand rule. The

meaning of the variables is shown in Fig. 6-16.
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7-1. Navigation Using Landmarks

Although navigation using landmarks is an old art, most of the known tech-

niques are not suitable for LRVnavigation due to manyconsiderations such as

reliability, weight of hardware, required time for each fix, accuracy, and con-

venience. Newtechniques are therefore needed to supplement the old techniques.

Several new techniques of landmark navigation are presented in this chapter.

All techniques involve only angle measurements. The use of angle measurements

only is very attractive since the required equipment is generally much lighter

and simpler than ranging equipment. Becauseof the simplicity of the equipment,
the schemescan be used to guide astronauts to walk back to LEMin case the LRV
is disabled.

Twotypes of landmark navigation are presented here." The first type makes

use of landmarks with known position andthe second type includes schemesusing

landmarks whose positions are not known. Most techniques reported in this chap-
ter are believed to be original.

7-2. Landmarkswith KnownPosition

Two assumptions are madefor this section: i) The position of each land-

mark is knownwith respect to a given lunar coordinate system, and 2) Only an

angle measurementdevice is used. The first assumption amounts to having a map

of landmarks. The computation required for navigation can either be performed

by time sharing the on-board computer or handled by an earth-based computer via

telemetry.

In the following sections, themeasurement geometry and analytics are

firstpresented, then the error sources and approaches to improve the naviga-

tion accuracy are discussed. Two rules concerning the selection of landmarks

based on results of the sensitivityanalysis are given. Techniques of using

redundant measurementsto improve the position determination are also presented
and compared.
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Known Azimuth Reference

If there is no noise of any kind involved in the measurement, two land-

marks are needed to obtain a fix when the azimuth reference is known and three

are needed when the azimuth reference is not known.

Referring to Fig. 7-1, let (Xl, yi ) and (x2, y2) be the known positions of

two landmarks, and (x, y) be unknown position of the LRV. Since the azimuth

reference is known, the angles eI and e2, which are measured from the azimuth

reference to the lines of sight from the LRV to two landmarks, can be measured.

Two equations representing the lines of sight are

Y - Yl

x - xI

Y - Y2

x - x 2

= tan OI = m I

- tan e2 = m 2

(7-1)

Rearranging the equations and using matrix notation, (8-1) becomes

-m I i

-m 2 i

x
b 1

b 2

(7-2)

where

b. = Yi - m.x. , (i --i, 2) (7-3)1 i i

Thus the LRV position is given by

x
-m I

-m 2

-I

i

i

(7-4)
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Using similar notation the geometry of the position fix using three land-

marks but no azimuth reference is depicted in Fig. 7-2. The angles, 81, 82, and

83 are measured from an arbitrarily chosen reference direction and _ is the

angle between this reference directionand the unknown azimuth reference. The

equations of three lines of sight are

Y - Yi

X _ X,

l
-- tan (e + 8i) (i = i, 2, 3) (7-5)

These three equations can be solved for three unknowns x, y, and _.

An alternate way of using three landmarks is to measure any two angles

between the lines of sight as shown in Fig. 7-3. Since landmark positions

areknown, each angle measurement determines an equation of circle passing

through two landmarks and the LRV position. Another angle measurement pro-

duces an equation of a second circle. One of the intersections of these two

circles is the LRV position which can be solved from these two equations.

Error Consideration

In practice perfect measurements can hardly be obtained due to unavoid-

able errors. The possible error sources are:

i. Human sighting errors

2. Landmark position errors

3. Instrument errors

4. Computation errors

The effects of the first three error sources can be reduced by the proper

choice of landmarks and by theuse of redundant landmarks. The computation

errors are caused by rounding off numerical numbers in the computer computa-

tion. In the following development we shall ignore computation errors.

Sensitivity Analysis

To have a feel of how various errors affects the accuracy of the position

fix let us first solve (7-1) explicitly.
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X _

y _.

mlXl - m2x2 + Y2 - Yl

m I - m 2

mlm 2 (xI - x2) + relY2 - m2Y 1

m I - m 2

(7-6)

Taking partial derivatives of (7-6) with respect to mi, xi, and Yi for i = i,

2 gives the following twelve sensitivity functions.

_y = m2 (Yl - Y2 ) - m22 (Xl - x2)

_ml (mI - m2)2

_y= ml (Y2 - Yl ) - m12 (x2 - Xl)

_m2 (m2 - ml)2

_x (Yl - Y2 ) - m2 (Xl - x2)

_ml (m I - m2)2

(Y2 - Yl ) - ml (x2 - Xl)

(m2 - ml)2

(7-7)

_Y = m2

_Yl m2 - ml

_Y = mlm2

_xI m I - m 2
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= m2ml
_x2 m2 - mI

8x 1
8Yl m2 - ml

_x 1
8Y2 ml - m2

8x ml

_-_i = m I - m2

_x m2

_x2 = m2 - mI

(7-8)

Notice that when mI = m 2 all activities become infinite. This is the

singular case when two lines of sight coincide. Thus it is desirable to select

landmarks such that m 2 - mI be as large as possible. Thinking along this way

we have the following rule

Rule i: Select the landmarks such that the sighting

lines intersecting at the LRV divide the 360 °

horizontal field of view, as nearly as possible,

into equal parts.

The following figure shows the ideal angle separation for cases of two and

three lines. Equation (7-7) also reveals that to make the sensitivities small

with respect to the slope measurements it is desirable to keep x I - x2 and Yl -

Y2 small. Constrained by Rule i, this means that the closer the two landmarks

are to the LRV position the better. Generalizing this idea we have a second

rule.
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Rule 2: If n landmarks are used, then amongall

the landmarks satisfying Rule i, choose

those n nearest to the LRVposition•

Redundant Measurements

Aside from reducing errors at error sources, the effect of errors can be

reduced by making redundant measurements and then applying certain statistical

data reduction techniques to arrive at an optimum position fix. Four data

reduction concepts will be discussed. They are:

i. Arithmetic mean,

2. Least square distance regression,

3. Least square solution error regression,

4. Sequential estimation (Kalman filtering).

The first three methods do not make use of statistical properties of errors.

Each of them is as good as the others when e_ror statistics ks _ot known•

When the statistics of errors are given, the last method would give better

results. All methods will be applied to an example_

Consider how n equations resulted from n landmark sightings.

-m 1

-m 2

-m
n

x

Y

( 4

DI

b 2

b n

(7-9)

where n > 2 and bo = v_ - m°xo_
i --i ii

In vector form we have

A z = b (7-10)
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where

X

Z =

Y

A _.

-m I

-m 2

-m
n

b
i

b
2

b =

b
n

All under-barred lower case letters denote vectors and capital letters denote

n!

matrices. The set of n equations will in general give (n-2)!2! inconsistent

solutions. One of the four data reduction concepts can be used to give an

improved unique solution.

Arithmetic Mean

Solving two of the n equations in (7-9) at a time we have



136

Z, °

--I3

x

Y

-I
A. b.• . , 1,3=-,z,---n
13 --i3 i < j

(7-n)

th
where A.. is a 2 x 2 matrix formed by the i and the j

13 .th th
a 2-vector formed by the i and the j elements of _.

z.. is therefore,
--x3

th
rows of A, and b.. is

--i3
The arithmatic mean of

x

(n-2)!2!
= n v I z..

• ij --13

i<j

(7-12)

Least Square Distance Regression

In this regression technique, the position z is selected to minimize the

sum of the squares of distance from the selected position to each of the set of

different solution given by (7-11). That is we want to minimize

-i T

II = _ (i- Aij bij ) (i- A_j bij) (7-13)
ij

i<J

Taking the derivation of (7-13) with respect to z and setting the result to

zero gives

= (n-2) !2!
-- n! _.. Aij bij (7-14)

13

i<j

which is simply the arithmetic mean, the same as (7-12).

Least Square Solution Error Regression

Write (7-10) as

A z - b = o. (7-15)
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No simple z can be found to satisfy this equation.
will result in a solution error

Instead, any selected z

c =Az-b

The criterion is to choose a z such that

= T12 e E = (Az-b) T (Az- b_) (7-16)

is minimized. Taking the gradient of (7-16) with respect to _ and setting

the result to zero gives

VI = AT (A_ - b_)= o (7-17)

Solving for _, yields

-I
i = (ATA) _ E (7-18)

Kalman Estimation

If the statistics of the measurement uncertainities are known, a sequential

estimation based on the Kalman filtering prine_p1_ r_n h_ e_p!oyed to yield the

LRV position.

The format of the discrete Kalman filter is first reviewed. The set of

equations describing the sequential operation of the Kalman filter is given by

--_-i + Kk [2k- Hk _-i ]' k=l,2,--- (7-19)

-I IH_ i (7-20)

T irk+i + T ]-IPk+l = Pk- Pk Hk+l Hk+l Pk HI_+I Hk+l Pk (7-21)

^

where _k is the estimate of the desired vector _k' _-k is a vector representing

the observed quantities and is related to Xk through the measurement equation.

2k -- Hk _k + _k (7-22)
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The vector _k represents observation noise whose covariance matrix is _. Hk

is a matrix relating the deslred quantities to the observed quantities. Pk is

the covariance matrix of the estimation error, ek = xk - _. The quantities

and P needed for starting the sequential computation are obtained from the
--o O

statistics of x . Now we shall formulate the landmark navigation problem into
--o

the Kalman filter format.

The observed quantity in our problem is the angle 8. and the desired are
1

LRV coordinates x and y. They are related by the nonlinear relationship

y - y_

8. : tan x (_-23)
l X -- X.

1

It is assumed that the observation error is not severe so the linearization of

(7-23) about the initially estimated LRV position is acceptable for describing

the perturbation relationships among variables. Differentiating (7-23) gives

the perturbation equation

Y - Yi x - x.l
de. -- - z dx + z dy (7-24)

z ri r.1

where r, = J (x-xi)2 + (y-yi)2i

Lu k i--z.z.2 J._

Thus the measurement equation corresponding

AS. =
1

Y-Yi x- x.1

r° 2 r. 2
1 1

No

1

AE

Ay

+ n. (7-25)
1

where the noise ni, representing the error in angle measurement, has a known

variance of R and a mean of zero.

^

The initial estimate x of the LRV position can be obtained by making
o

two initial angle measurements eol and 0o2 and then solving the equation.

^

Yo - Yol

-- tan 8ol (7-26a)-
o Xo2
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Yo - Yo2

= tan 8o2
3 ° - Xo2

(7-26],)

where (Xol , Yol ) and (Xo2 , Yo2 ) are the positions of two landmarks. Therefore,

0 =

O

tan6ol Xol - tan6o2 Xo2 + Yo2 - Yol

tan8ol - tan%o2

(7-27)

tan6ol tan6o2 (Xol - Xo2) + tanSol Yo2 - tan6o2 Yol

tan6ol - taneo2

To obtain P , we first differentiate (7-27) with respect to angles 6
o ol

and 6
02"

AX
o

2 2

[(X2o-Xo)tan6o2 + Yol-Yo2]SeCeol A8ol + [(Xol-Xo2)taneol+Y2-Yl]SeCeo2A6o2

(tan8ol - tan8o2 )2

(7-28)

2 2
tan6 sec6 Ae[(x°2-X°l)tanSo2+Yol-Yo2]taneo2 seCSolAeol+[(Xol-Xo2)taneol+(Yo2-Yol) 1 02 oz^

AYo =

(tan8ol - tan8o2 )2

In vector form,

I x°JA f °ol]
l. oj [.0o.j

(7-29)
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where

A

2

[ (Xo2-Xol) tanSo2+Yol-Yo2 ]seCeol

(taneol - taneo2 )2

2

[ (Xo2-Xol) tanSo2+Yol-Yo2 ]tanBo2Seceol

(taneol - tanSo2 )2

2

[ (Xol-Xo2) tanSol+Yo2-Yol ]seC8o2

(tanSol - tanSo2 )2

2

[ (Xol-Xo2) tanSol+Yo2-Yol ] taneolSeCSo2

(tanSol - taneo2 )2

Then compute P from
o

P = [Ax A o]
o IAYoj o

= AQA T (7-31)

Aeol]

where Q is the covariance matrix of i eo2jwhich is assumed known.

The computation procedure for the Kalman estimation can now be listed as

follows:

i. From the two initial angle measurements Col and 8o2 calculate the

initial estimate of LRV position (Xo, yo ) using (7_27), and obtain the initial

error covariance matrix P using (7-28).
o

2. To each redundant angle measurement ek corresponding to landmark

No. k, compute

-I

8k = tan

Yo - Yk

o

Aek = 8k - 8k

rk 2 = (_-i - _)2+ (Yk-i - Xk )2
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mk

^ ^ --

Yk-I - _k Xk-i - _k

rk2 Fk2

-I

Pk = Pk-i - Pk-i HkT [R + Hk Pk-i HkT] Hk Pk-i

Kk-- P i +Hk _k

3. Compute the h-th correction from

+

4. Compute the h-th corrected LRV position from

^ ^

5< - _ + A_k <_x = o)o o

Yk = Yo + AYk (A9° = o)

5. If a (k+l)-th angle measurement is made repeat step 2 to 5 for

the (k+l)-th corrected LRV position.

7-3. Landmarks Whose Positions are not Known

The lunar coordinates of the LRVcannot be determined by observing land-

marks whose positions are not indicated on the available lunar maps. However,

it is possible to use these observations to locate the LRV on an unscaled map

of the lunar surface. This technique can be used to guide the LRV to return to

any or all of the previously visited sights, including the original starting

point at the LEM.



Whena reference dlrectlon isavailable, two landmarks within visible range

are enough to guide the LRV. Whena reference direction is not available, three

landmarks are needed. These two cases will be presented separately in the

following discussion.
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Use of a Reference Direction

When a reference direction is available, two landmarks are sufficient to

guide the LRV to a previously visited site. Consider the situation shown in

Fig. 7-5. Here the navigator is given a reference direction and two landmarks

whose positions are not known. The reference direction might be defined by the

solar direction, a stellar direction, or the direction to a landmark on earth.

The following equations will enable the navigator to return from his present

position to his initial position using only angle measurements.

Various solutions to this problem can be devised. The special advantage

of the scheme described here is that it provides the steering direction which

enables the LRV to move from its present position to the initial position in a

straight line. This feature allows the navigator to return quickly and to con-

serve energy.

Let the initial anglesof the landmark direction measured from the reference

direction be _ and B while the present angles are _i and B I as shown in Fig. 7-5.O O'

In order to determine the returndirection the navigator must move the LRV

a short distance in any direction away from the present position as shown in Fig.

7-6. He must measure the angles 0 and 4 before the movement, and measure the

angles 8' and 4' after the movement. Then the proper steering angle, _i' can be

determined from equations (7-32) and (7-33). The angle _i is defined in Fig. 7-7.

sin4' sin(0' - 8) sin (BI - 8o)
n = (7-32)

sinS' sin(_' - 4) sin (el - _O )

Ksina - sinB
--i 0 0

YI = tan Kcos_ + cos8 (7-33)
O O

The derivation of these equations is in Appendix G.
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Notice that in (7-33), to each given arctangent two values of Y1 can be found.
This ambiguity will be resolved in the continued study.

Reference Direction Not Available

When a reference direction is not available three landmarks are required to

guide the LRV back to its initial position. Fig. 7-8 depicts the geometry of the

problem and defines all angles. The direction of the shortest return path is

given by the angle YI" Notice the reference of each angle measurement and the

direction of positive angle.

The present problem is: given the measured angles e and 8 between lines
o o

joining the initial LRV position and landmarks, and also angles eI and 81 at the

present LRV position, how can the angle Y1 for the shortest return path be deter-

mined.

The angle YI is given by

-i

YI = tan

k2 sin A sin B - k 3 sin eI sin C

k 2 sinB (cos A _ k3 cos C) + k 3 sin C(k 2 cos B - cos el)
(7-34)

whe re

A =el +61

B = eI - s °

C = eI - e + 81 - 8o o

(7-35)

R 2

k 2 = RI

R3

k 3 = RI

(7-36)

The ratios k 2 amd k 3 can be determined by the technique similar to the determina-

tion of (r2) in Appendix G. If the LRV is moved a short distance in any direction
r 1

at the starting end as shown in Fig. 7-9, then
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R 2 sin 02 ' sin (01 ' - 01)

k2 =-_--i = sin 0I' sin (82 ' - 02)
(7-37)

sin 03' sin (01 ' - 01)

sin 0 I' sin (03 ' - 03 )
(7-38)

All above equations are derived in Appendix G.

As in the case of last section, the value of Y1 given by (7-34) is not unique.

This ambiguity will be resolved in the continued study.

7.4. An Example

Consider the case where landmark positions are known. The true position of

the LRV is at x = y = o. Ten angle measurements are made to ten different land-

marks whose positions are known. The landmark positions and the corresponding

angle measurements are shown below.

Landmark Position Measured angle

X (KM) Y (KM) (degree)

2 ± 26. 7047

4 -2 -26.5795

-2 8 i0 3. 8340

-5 -2 202.0022

6 8 53.1393

2 5 68.2511

-6 6 135.0673

5 -6 -50.3190

-6 -I0 239.1266

-5 1 168.6730

It is known a priori that the measured values of the angles are contaminated

with noise having a mean of zero and a variance of 0.01. The techniques dis-

cussed above are used to obtain the estimates and the results are listed in

Table 7-1 and plotted in Fig. 7-10. Fortran programs used to compute these esti-

mates are included in Appendix H.
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Arithmetic mean:

X = 0.0021546 KM y = 0.00531784 KM

Least Square Solution Error Regression

x -- 0.015 KM y -- 0.001 KM

Kalman estimation

x = 0.0070807 KM
o

xI = -0.0044727

x2 = -0.0064793

x3 = -0.0058166

x4 = -0.0015173

x5 = +0.0016975

x6 = +0.0068746

x7 = +0.0032268

x8 = 0.0018305

Yo = 0.0024522

Yl = -0.0063779

Y2 = -0.0036411

Y3 = -0.0035441

Y4 = -0.0025585

y_ = -0.0011890

Y6 = +0.0009305

Y7 = 0.0002596

Y8 = -0.0006101

Result of the Example

Table 7-1
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CHAPTER 8

DLRV NAVIGATION SYSTEMS AND THEIR COMPARISON
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8-1. General

The organization of the total DLRV navigation system is dictated by the

DLRV mission requirements. To have continuous navigation, which is needed for

vehicle guidance, a dead reckoning navigator must be part of the total system.

However, for a long mission period the errors that accumulate with time when a

dead reckoning navigator is used would be prohibitively large. Some type of

position fix scheme must be employed to periodically update the position esti-

mate provided by the dead reckoning system.

In this chapter comparison will he made among dead reckoning navigators and

among position fix schemes. A base line total system will be proposed as a

standard for comparison.

8-2. Dead Reckoning Navigators

Two kinds of measurements are involved in a dead reckoning navigator,

................... _ _,= u_=_=LLU= ,;=m_uremen=s. Various combinations of

these two kinds of measurement devices give many different dead reckoning navi-

gators.

Orientation Measurement Devices

Table 8-1 presents a list of seven candidate orientation measurement

devices for DLRV. Advantages and disadvantages of each device are discussed

in the "Remark" column.

All devices, except the gimbaled platform, are attractive for DLRV appli-

cation in certain respects. The gimbaled platform is simply too heavy and too

bulky. Although the pure odometer device is not precise enough to be part of

the main navigator, it is very attractive as a back-up, especially for comple-

menting the sun-sensor when the latter is shadowed.
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Orientation
Measurement

Device

le

Gyro-Gyro

,

Pendulum-

Gyro

Vertical

Measurement

.

Gyro-Sun-
Sensor

.

Pendulum

Sun-Sensor

,

Strapdown

Platform

Uni t

o

Gimbaled

Platform

Unit

e

Pure

Odometer

Device

Vertical

Gyro

Pendulum*

Vertical

Gyro

Pendulum*

Azimuth

Measurement

Directional

Gyro

Directional

Gyro

Sun-Sensor

Sun-Sensor

No direct vertical and

azimuth measurements.

Angular rates are mea-

sured.

Platform is stabilized

by gyro outputs.

None

Differential

of Odometer

Outputs

Remarks

Adv: - Does not require solar line of sight
- Can be made insensitive to lateral

acceleration

Disadv: - Heavier than systems 2, 3, and 4

- Drift in directional gyro

Adv: - Light weight

- Does not require solar line of sight

Disadv: - Drift in directional gyro

- Sensitivity to lateral acceleration

can be minimized but not completely

eliminated

Adv: - Light weight

- Reliable and drift free azimuth sensor

- Can be made insensitive to lateral

acceleration

Disadv: - Vulnerable to shadowing

Adv: - Very light weight

- Both sensors are drift free

Disadv: - Vulnerable to shadowing

- Sensitivity to lateral acceleration

can be minimized but not completely
eliminated

Adv: - Lighter than gimbaled platform

- Good precision

Disadv: - High computation requirements

Adv: - Good precision

Disadv: - Too heavy and too bulky for DLRV

application

Adv: - Extreme simplicity, no extra sensor
needed

- An attractive back-up for temporary

navigation

Disadv: - Not precise because of no vertical
reference

- Wheel slip causes permanent heading

error

*This includes the use of accelerometers as a pendulum.

Orientation Measurement Devices

Table 8-1
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Two most attractive distance measurement devices for DLRV application are

the odometer and the accelerometer. The comparison of the two is given in

Table 8-2.

Dead Reckonin$ Navisators

Table 8-3 lists the fourteen dead reckoning navigators that are generated

by combining the seven orientation measurement techniques of Table 8-1 with

the two distance measurement techniques of 8-2. It is noted in Table 8-3 that

some of these combinations are attractive for the DLRV mission while others are

unreasonable combinations.

8-3 Position Fix Navigators

Position fix schemes have been studied that are based on sightings of three

different kinds of references: natural celestial bodies, lunar satellites, and

lunar landmarks. Table 8-4 lists some of the basic advantages and disadvantages

of these three position fixing concepts.

8-4 Base-Line Navigation Package

Here a base-line navigation package, including both dead reckoning and

position fix systems, will be selected as a standard for comparison for any

candidate schemes for DLRV navigation. In order to provide a good base line for

comparison, this package has been conservatively selected as an approach that

will meet the essential navigation requirements and not require any extraordinary

support devices. It should be emphasized that the selected base line system is

not necessarily the best system.

The dead reckoning portion of the base line package is number Ii in table

8-3. This dead reckoning navigator uses a directional gyro and a vertical gyro

to determine the LRV orientation and an odometer to measure distance.

Those dead reckoning combinations that use a solar directional reference

were discarded because the base-line system should be operative even when sha-

dowed. In order to qualify a dead reckoning package that uses a solar sensor for
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Devices

I. Odometer

I!. Accelerometer

Remarks

Advantages:
- No extra sensor needed since an odometer

is already built into each wheel assembly

- Not affected by gravitational acceleration

Disadvantages:

- Wheel slips cause measurementerror

Advantages:

- Not affected by wheel slips

Disadvantages:

- Gravitational acceleration must be sub-

tracted using measuredorientation

- Moresensitive to bias due to double

integration

Distance MeasurementDevices

Table 8-2
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Distance
Orien-
tation

i
Gyro-Gyro

2
Pendulum-
Gyro

3
Gyro-Sun-
Sensor

4
Pendulum-
Sun-Sensor

5
Strapdown
Platform

6
Gimbaled
Platform

7
Odometers

I Odometer

II
(Base-line System)

12

13
- Needback-up when

shadowed

14
- Needback-up when

shadowed
- Lightest system

15
- More computation

required

I6
- Too heavy and too

bulky

II Accelerometer
and

Integrators

IIi

I12

I13
- Needback-up when

shadowed

II4
- Needback-up when

shadowed

115
- More computation

required

I16
- Accelerometers are

mounted on the
platform to eliminate
resolving accelero-
meter signals

17
- Using sameodometers
- Back-up for System

13 or 14

I17
- Back-up for System

113 or 14.

Commentsfor DeadReckoning Navigators

Table 8-3
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Navigator

Use of
Celestial
Bodies

Use of
Lunar
Satellites

Use of
Landmarks

Remarks

Advantage:
- Stars are already available

Disadvantage:
- Very sensitive to measurementerror

Advantages:
- Less sensitive to measurementerror

as comparedto celestial navigation
- May take the advantage of the lunar

scientific satellite if there will
be one.

Disadvantages:
- Very expensive if need to provide a

lunar satellite just for LRVnavi-
gation

- Needto know accurately the orbital
elements of lunar satellites

Advantages:
- Least sensitive to measurementerror

due to the short distance between
landmarks and LKV

- Very reliable when landmarks are
available

- Simple hardware

Disadvantage:
- Landmarksmaynot be available

Position Fix Navigators

Table 8-4
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the DLRV, it will be necessary to demonstrate that this temporary loss of direc-

tional reference can meet the mission requirements as well as the base line sys-
tem.

Similarly, systems that use pendulous vertical sensors were discarded. In

order to qualify a dead reckoning package that uses a pendulum it will be necessary

to demonstrate that the pendulum swinging does not seriously degrade the naviga-
tion accuracy.

Odometersare selected to measure distance because they appear to be the

simplest and most reliable way to do the job.

The position fix portion of the base-line system must be based on the con-

cept of sighting natural celestial bodies. The base-line system cannot depend
on satellites or landmarks. It cannot dependon satellites because it is uncertain

whether it will be possible to providethistype of artificial reference. The
m

base-line position fix scheme cannot depend on lunar landmarks because it is

uncertain whether the lunar terrain will beso hospitable as to provide naviga-

tor with a dependable supply of distinguishable landmarks.



CHAPTER9

SUMMARYANDRECOMMENDATIONS

159

This chapter contains a brief summaryof this report and recommendations
for further research activities.

9-1. Summary

The requirements of continuous and high precision navigation for the DLRV

dictates that both dead reckoning and position fix navigators be employed. A

detail study of various navigation components,dead reckoning navigators, posi-
tion fix navigators, and navigation systems was made.

were discovered and solutions to them were suggested.
results contained in this report are summarizedhere.

Many technical problems

Several most important

Two sets of dead reckoning navigation equations are given. The second set
is an approximation of the first, and is very satisfactory when the excursion
range between updates is small.

In principle, a pure odometer navigator can be constructed to measureboth

_._= of u._ all. Lance.traveled by the DL_v on a smooth level

surface. The system is not suitable as a primary dead reckoning navigator because

of its high vulnerability to wheel slip. Extending its range of application

beyond the level surface is not recommended. However, the pure odometer naviga-

tor is very attractive as a temporary back-up, especially for complementing the

solar sensing device to eliminate the shadowing difficulty.

Because of their simplicity and light weight odometers seem to be the best

for distance measurement. But, the conventional way of processing odometer sig-

nals has serious pitfalls. Techniques for correct mechanization were developed.

Analysis shows that a properly damped pendulous inclinometer can satisfacto-

rily provide a vertical reference. An inclinometer is much lighter and consumes

less power than a vertical gyro.

Five different arrangements for using solar sensors as a heading indicator

were proposed, and the required computations were also developed.
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Two celestial position fix schemes and four lunar satellite position fix

schemes were investigated. Their sensitivity analyses and computation equations

were developed. Better position determination can be achieved using a lunar

satellite at the expense of system complexity and the installation of a satellite.

On the other hand, celestial navigation, though less accurate, is much more econo-

mical.

Several new techniques of using lunar landmarks for position fixing were

developed. All techniques require only angle measurements. The techniques

are very attractive for two reasons. First, the distance between landmarks and

the LRV are much shorter than those between stars or satellite and the LRV.

Therefore, the error sensitivity due to equipment imperfections is much smaller.

Secondly, in general, the angle measuring device is much simpler than a ranging

device. Therefore, for the determination of the LRV position on a lunar map,

position fix using landmarks is probably the best. Furthermore, when many land-

marks are available, redundant measurements can easily be made to improve the

navigation accuracy.

Comparisons were made among various sensors, navigators, and navigation sys-

tems. A base-line, total navigation system was proposed and is intended only as

a comparison standard. The system _onsists of a celestial navigator for position

fixing and a dead reckoning navigator for continuous navigation. The dead rec-

koning navigator includes a vertical gyro and a directional gyro for orientation

measurement and odometers for distance measurement.

Since aerospace industries are constantly working to improve various navi-

gation equipment and since the slow-down of Apollo Application Program will allow

more time for hardware improvement, this study did not try to single out a parti-

cular navigation system as the best for the DLRV application.

9-2. Recommendations for Further Research

Besides yielding many new results the research reported here also generated

many new concepts which deserve further investigation. A thorough study of these

concepts will prepare a foundation for an economical development of a better DLRV

navigation system. Continued research activity in this direction is strongly recom-

mended. Four most important problems are described briefly in this section.



Position Fix Usin 8 Landmarks

161

From the viewpoint of performance reliability, crew safety, and simplicity

of the equipment, the DLRV navigation should take the advantage of lunar land-

marks whenever they are available. Continuing research is needed to further study

and refine the new concepts advanced in this report. Details to be investigated

include:

i. The removal of the heading angle ambiguities

associated with navigation schemes using

unknown landmarks.

2. A sensitivity analysis for each proposed land-

mark navigationscheme.

3. The development of an efficient policy for

discarding old landmarks and picking up new

landmarks as the DLRV moves along.

4. A study of the feasibility of using the pro-

posed schemes as primary position fix naviga-

tors and as back-up navigators.

5. Investigation of the hardware required for each

scheme.

6. A critical comparison of the landmark navigation

approach to other navigation approaches for th_

DLRV application.

Optimum Combination of Dead Reckoning and Position Fix Data

In this report, dead reckoning and position fixing systems have been dis-

cussed separately. The position fix system has been treated as something that

will be used periodically toupdatethe continuous dead reckoning system. No

attention has been directed to the details of this updating procedure.

The most straightforward updating procedure would be to reset the dead

reckoning navigator to the location indicated by the position fix scheme whenever

a position fix is obtained. This approach to the problem implies the assumption

that the position fix information is perfect and that the dead reckoning infor-

mation is useless. Fortunately, this is not the true situation. When the dead

reckoning system has been operating for a long period of time since its last

updating, its position estimate willbecome imprecise because of biases in the

sensors. Nevertheless, this dead reckoning estimate still contains some
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information about the vehicle location and this information should not be wasted.

A better way to combine these two types of navigation data would be to

recognize that neither the dead reckoning nor the position fix data is perfect

and to treat them accordingly. The satistical properties of the dead reckoning

and position fix navigation errors can be estimated by considering the type and
the quality of the sensors that are used. Once the statistical properties of

the navigation errors for the dead reckoning and position fixing schemesare

estimated, a procedure can be devised to combine the dead reckoning and position

fix data in a manner that will minimize the probable navigation error. The Kalman

filtering formulation can be used to produce an optimal way to cimbine the two

sets of data. In reference 26 this problem is studied as it applies to naviga-
tion of ships at sea.

The following is a list of problems which need to be studied:

I. Development of techniques for optimum instrumentation

by first performing the analytical study keeping in

mind the practical constraints imposedby the naviga-
tion hardware.

2. Study the additional instrumentation and data pro-
cessing required.

3. Evaluating the performance of the developed techniques

by performing a simulation study using practical hard-
ware data.

4. Comparingthe merits of all developed techniques.

It should be pointed out that the results obtained from this study can

easily be incorporated into any chosen navigation system consisting of dead
reckoning and position fix navigators, since the major effort of the optimum

instrumentation is in data processing and instrument adjustment.

DLRV's Total Navigation, Guidance_ and Control System

Since navigation, guidance, and control are intimately related, a study

should be made to consider the best combination of the three subsystems into an

integrated, total system. Among the items needed to be studied are:

i. Compatibility

2. Mobility

3. Maneuvability and ease

of operation
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4. Overall reliability

5. Total power consumption
6. Others

Satellite Navigation

Although a DLRV navigation using lunar satellite is an expensive one, its

prospect indeed warrants further research and development of the concept.

Experience with Navy's TRANSIT system indicates that satellite navigation approach

maybe important in achieving the kind of position determination accuracy

desired by scientists. The preliminary investigation has shown that given the

orbital elements of the satellites, satellite navigation is more accurate than

the known celestial navigation. It is very possible that scientists will need

lunar satellites for scientific objectives. Under this condition it would be

very convenient for NASA to share these satellites for navigation purposes.

The points that need to be studied in satellite navigation include:

i. The concepts

2. The required operation efforts such as tracking,

ranging, angle measuring, etc.

3. The required data processing effort and how to

do it.

4. f_e required on-board and earth-based equipment.
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APPENDIXA

COMPUTATIONOFNAVIGATIONERRORFORPUREODOMETERSYSTEMUSEDONA TILTEDPLANE

The pure odometer navigation system described in Section 4-1 will accurately
compute the LRVcoordinates along the axes of the tilted surface. Errors occur

because the navigation system output is interpreted as being the LRVcoordinates

along the level axes. The following equations give the x and y coordinates of
the LRVas functions of e, B, and the x' and y' coordinates.

X _

X v COS (_

"_i - sin 2 _ sin 2 8

y

sin _ sin B

VI - sin 2 _ sin 2 B

cos B

The navigation error that is caused by using this pure odometer navigation system

on a tilted surface is the difference between the LRV coordinates in the tilted

plane and the coordinates in the level plane. Therefore,

g = X v - X

X

----X

1 -- COS

1 - sin 2 _ sin 2 B

=y' -y
Y

= Y' __ [y, __ X' sin e sin 8 ]cos 8
V I - sin 2 _ sin 2 8



APPENDIXB

DERIVATIONSOFEXPRESSIONSFORGIMBALANGLESFORTWO-DEGREE-OF-FREEDOMGYROS

167

The coordinates of the fixed $2 coordinate system are related to the

coordinates of the vehicle referenced SI coordinate system by the following
equation.

r il

Jl

Lkl

12

A] J2

k 2

(B-I)

where the elements of [A] are

all = cos 0 cos

a12 = sin 8

a I_ = - sin P cos e

a21 = sin e sin _ - cos _ sin e cos

a22 = cos e cos ¢

a23 = cos ¢ sin 8 sin _ + sin _ cos

a31 = sin e cos P sin _ + sin P cos

a32 = - cos e sin

a33 -- cos _ cos _ - sin _ sin 8 sin

Fig. 5-11 in the text shows that the sides of the inner gimbal angles are

the sides between one coordinate of the SI system and a second coordinate in the

$2 system. Consequently the cosines of the inner gimbal angles are simply the

element from the matrix A that is the direction cosine between those two coordi-

nates. This means that the cosine of the inner gimbal angle is a where
mn



168

m is i, 2, or 3 depending on whether the side of the angle
^ ^

that is a Sl coordinate is 11, Jl' or kI.

n is i, 2, or 3 depending on whether the side of the angle
^ ^

that is a $2 coordinate is i2, J2' or k 2.

The cosines of the outer gimbal an_les are more complex and the derivation

of these expressions is also more complex. Fig. 5-11 shows that one of the sides

of the outer gimbal angle is a coordinate of the SI coordinate system and that

the other side is a direction defined by the vector cross product of one coordi-

nate in the SI system and one coordinate in the $2 system.

As an example the procedure for determining the cosine of the outer gimbal

angle will be demonstrated for arrangement i. The cosines of the outer gimbal

angles for the other systems are obtained in the same way.

In arrangement i the outer gimbal angle is between il and the direction

defined by k I x i2. From Equation B-I

^
^

i2 = cos e cos _ iI + (sin _ sin _ - cos _ sin e cos _) J l

^

+(sin 8 cos _ sin _ + sin _ cos _) k I

^ ^ ^

It follows that k I x i2 = (cos _ sin 8 cos P - sin _ sin _) iI

^

+ cos 8 cos _ J l

^ ^

The cosine of the outer angle between iI and (kI x i2) is
^

i I ^ ^
cos (OA) = " (kI x i2)

^ ^

(kI x i2) I

Therefore,

cos (OA)=
cos_ sine cos _ - sin_ sin_

(cos_ sine cosy - sin_ sin _)2 + (cos _ COS @)2
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APPENDIXC

DERIVATIONOF SENSITIVITYEQUATIONSFORCELESTIALPOSITIONFIXES

C-I. Sensitivity Equations for Position Fix Using an Earth Landmarkand Two
Stellar Directions

^ ^ ^

An i, m, n coordinate system is defined with n along the LRV's local verti-
^ ^

cal, m perpendicular to n and on the great circle determined by the LRV position
^

and GPE, and i completing the right-hand triplet.

From the geometry of Figure 6-2 it is possible to write

P cos ql = P " Sl

= (R - 7) • s I

Differentiating this equation gives

AP - p sinql Aql = - _cosq 1

From the law of cosines

u

• Ar (C-l)
i

p2 = R 2 + r2 _ 2rR cos8

Differentiating this equation produces

2P AP = 2rR sinB A8

Then

Rr

AP =-_ sin8 A8

For small changes in

Ar • m
AB =

r

Combining (C-l), (C-2), and (C-3) gives

(C-2

(C-3)

R -- ^ -- ^

cosql sin8 Ar • m + P sinql Aql = Ar • s I (C-4)
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^ ^ ^

Sl can be resolved along i, m, and n as follows

^ ^ ^

Sl = sinYl c°sal £ + sinYl sinai m + cosYl n (c-5)

Substituting (C-5) into (C-4) gives

^

R cosql sin8 Ar • m + P sinql Aql =P

^

Ar • (siny I cosa I £ + siny I sina I m) (C-6)

(C-6) can be solved for Aql

Similarly

^

Aql = Psinql [siny I cosa I £ + (siny I sina I

R

p c°sq I

^ ^
m

sinS) m + cosYl n] • Ar

I

Psinql [siny I cosa I Ar£ + (sinYl sina I

R

---cos ql sinB)Arm]

i

Aq2 = Psinq2 [siny 2 cosa 2 Ar£

+ (siny 2 sina 2
R

p c°sq 2 sinB)Ar m] (c-8)

(C-7)

(C-7) and (C-8) can be expressed in matrix form

Aq I

Aq 2

r

siny I cosa I

P sinq I

siny 2 cosa 2

P sinq 2

i R

Psinql (sinYlsina I- _ cosql sin8)

l R

Psinq2 (siny 2 sina 2- _ cosq2 sin8)

Ar_

Ar
m

The inverse relation is

Ar_

Ar
m

= I

sinYl sinY2 sin(a 2 _ al) + R sin8 (cosql siny 2 cosa 2 - cosq2 sinYl cosal)P
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sinq I (siny I sin_ 2 - _ cosq2 sin8)

- sinql siny 2 cose2

R
-P sinq 2 (siny I sin_ I - _ cosql sinB)

P sinq 2 siny I cos_I

C-2. Sensitivity Equations for Position Fix Using Two Stellar Directions and
the Local Vertical

^ ^ ^

A i, m, n coordinate system is defined as shown in Fig. 6-6.
^ ^

local vertical, i is in the n sI plane and is perpendicular to n.

the right-hand triplet.

ql is the angle between s I and r. There fere,

^

r cos ql = r • s I

Differentiating this equation gives

- r sinql Aql = AT • sI

For small changes of ql

Aq I 1 AT mr

^ ^ A

s I can be resolved along i and n as follows.

sI = sinql E + cosql n

Substituting (C-9) into (C-10) produces

^

n is the LRV's
^

m completes

(C-9)

(C-lO)

i (sinql _ + cosql n) • AT
Aq I = rsinql
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^

But Ar is perpendicular to n so

i
Aql = - r Ar£

Similarly

^

r cos q2 = r - s2

^

Differentiating both sides and resolving s2 gives

i (cosa Ar£ + sins Ar m )Aq2 = - r

(C-II) and (C-12) can be written in natrix form.

(c-n)

(C-12)

Aq I

Aq2

i

r
o

1 sins
-- -- COSC_

r r

Ar£

Ar m

Consequently

&r£

Ar
m

-- [-r or cot e - r csc_

Aq I ]
I

Aq2 J
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APPENDIXD

DERIVATIONOFPOSITIONFIX EQUATIONSFORCELESTIALPOSITIONFIX SCHEMES

D-I. Position Fix Equations Using Earth Landmarkand Two Stellar Directions

An x' ' ', y , z coordinate system is defined in Fig. 6-3.
toward star number i.

The z'-axis points

Y

x' = x sin%I - y cos%I

= x cos% I sinL I + y sin% i sinLl - z cosL I (D-l)

= x cos% I cosL I + y sin_ I cosL I + z sinL I

The equation of the cone with the center line directed along the z'-axis, the

vertex at the center of the moon, and the cone angle ql is

x,2 + y,2 z,2
= tan-ql (D-2)

Substituting (D-I) into (D-2) gives the equation of the cone in xyz-coordinate

system:

[x sin% I - y cos%l]2 + [x cos,\I sinL I + y sink I sinL I - z cOSLl]2

= [x cosl I cosL I + y sin% I cosL I + z sinLl]2 tan 2 ql

q

Then the equation of the cone with its vertex at the landmark on earth is

[(x - XE)sin% I - (y - YE)COS%l]2 + [(x - XE)COS% I sinL I + (y - YE)sin% 1 sinL I

-(z - ZE)COSLl ]2 = [(x - XE)COS% I cosL I + (y - YE)Sin% I cosL I + z sinLl]2tan2q2

(D-B)

Similarly the equation of the cone with center line directed along the stellar

direction #2, with cone angle q2' and with vertex at the landmark on earth is
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[(x - XE)sin% 2 - (y - YE)COS%212 + [(x - XE)COSl 2 sinL 2 + (y - YE)sin% 2 sinL 2

(z - ZE)COsL2 ]2 = [(x - XE)COSl I cos L 2 + (y - YE)sinl 2 cosL 2 + z sinL2]2 tan2q2

(D-4)

After simple manipulation (D-3) and (D-4) become

(x - XE)2(l - cos2L I cos2_ I sec2ql ) + (y - yE)2(l - cos2L I sin2_ I sec2ql )

2
+ (z - ZE) (i - sin2L I sec2ql ) + (x - x E) (y - yE ) sin211 (2 - cos2L I sec2ql)

(y - yE)(Z - ZE)sin2L 1 sina I sec2ql - (z - ZE)(X - XE)sin2L 1 cos% 1 sec2ql = 0

(D-5)

(x - XE)2(l - cos2L 2 cos2% 2 sec2q2 ) + (y - yE)2(l - cos2L 2 sin2% 2 sec2q2 )

+ (z - ZE)2(l - cos2L 2 sec2q2 ) + (x- XE)(y - yE ) sin2%2(2-cos212 sec2q2)

-(y - yE)(Z - ZE)sin2L 2 sinl 2 sec2q2 - (z - ZE)(X - XE)sin2L 2 cosl 2 sec2q2 = 0

(D-6)

The equation of the moon's surface is

._2 __2 2 r2 ,_y %Z _o-7)

The LRV coordinates, x, y, and z can be determined by simultaneous solution of

(D-5), (D-6), and (D-7). Note that the coordinates of the landmark on earth are

x E = R cosX E cosL E

YE = R cosL E sin% E

z E = R sinL E

where R is the distance from moon center to the earth landmark.

The LRV lunar latitude, L, and its lunar longitude, %, can be determined

from the following equations.



175

-IRL = sin --z

 :sin-I[ 1R cos L

D-2. Position Fix Equations Using Two Stellar Directions and Local Vertical

With the geometry of Fig. 6-5 the spherical trigonometry law of cosines

gives the following relations.

cosq I = cos(90 ° - Ll)COS(90° - L) + sin(90 ° - Ll)sin(90° - L) cos(% - hi)

= sinL I sinL + cosL I cosL cos (_ - hi)

cosq 2 = cos(90 ° - L2)cos(90° - L) + sin(90 ° - L2)sin(90 ° - L)cos(% 2 - %)

= sinL 2 sinL + cosL 2 cosL cos (_2 - _)

These equations can be solved to produce

cosq. - sinL. sinL
-i -± ±

- _ = cos ( ) (D-8)
1 cosL 1 cosL

-I cosq2 - sinL 2 sinL

_2 - _ = cos ( cosL 2 cosL ") (D-9)

Combining (D-8) and (D-9) gives

or

_ = (cosql - sinL I sinL

_2 %1 c°s-i cosL I cosL ) + c°s-_

cosq2 - sinL 2 sinL
( )

cosL 2 cosL

(D-IO)

cosql - sinL I sinL cosq2 - sinL 2 sinL

cos(_2 - hi) = ( ) (
cosL I cosL cosL 2 cosL

_ cO2Ll - (cosq I -sinL I sinL)Z_cosL 2 - (cosq 2 -sinL 2 sinL) 2 (D-10)

_ [-
co2e co2e

cosL I cosL 2 cos ZL
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(D-10) and (D-II) are transcendental equations in L. Either of these two equations

can be solved to determine L. Then either (D-8) or (D-9) can be used to determine

and thus complete the determination of the LRV lunar coordinates.



177

APPENDIXE

DERIVATIONOF SENSITIVITYEQUATIONSFORSATELLITEPOSITIONFIX SCHEMES

E-I. Sensitivity Equations for Position Fix Using LRVto Satellite Range

^ ^

A i, m, n coordinate system is shown in Fig. 6-7. n is the LRV's local ver-
^ ^

tical; i is in the r R plane and is perpendicular to n; m completes the right-

hand triplet.

Using the geometry of Fig. 6-7, the law of cosines gives

q12 = RI2 + r 2 _ 2rRl cosE I

Differentiating this gives

2q I Aq I = 2rR I sine I AE I

or

rR I sine I &E 1
(E-l)

Aql = ql

In Fig. 6-6

R! sinB! = q! cos E1 (E-2)

Substituting (E-2) into (E-l) gives

For small changes of E1

Aql = r cos E 1 AE I

&El = r

Substituting (E-4) into (E-3) produces

^

Aql = cos E1 _ • Ar

= cos E1 Ar k

Similarly

qp2 = Rp2 + r2 - 2rR2 cosE 2

(E-3)

(E-4)

(E-5)
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Diflerentiating this equation

or

From Fig. 6-6

2q2 Aq2 = 2rR2 sin82 AB2

rR 2 sinB 2

= A82
Aq2 q2

R2 sinB2 = q2 cos E2

Putting (E-7) into (E-6) gives

(E-6)

(E-7)

But

I_JOW

Aq2 = r cos E2 A82

^ ^

£2 = £ cos _ + m sine

Ar • £2 1

A8 2 = = --r r
[cos _ £ + sine m]. A_

(E-8)

(E-9)

Combining (E-9) and (E-8) gives

Aq2 = cos E2 [cos_ _ + sins m]" Ar

& cos E2 cos_ Ar_ + cos E 2 sins Ar m (E-10)

(E-5) and (E-10) can be written in matrix form

Aq I

Aq2

cos E 1 o

cos E 2 coss cos E2 sins

Ar£

Arm

Conversely

A_

Ar
m

sec E1

-cots sec E1

O

sec E 2 csc_

Aq I

Aq 2



As the sighting azimuthal separation approaches 90° and the sighting elevations

approach zero; then the above equation goes to simply
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Ar£

Arm

1 0

o i

E-2. Sensitivity Equations for Position Fix Using LRV to Satellite Range Rate

This scheme uses a doppler radar to measure the range rate between the LRV

and an overhead satellite$ It is assumed that the satellite trajectory is known

as a function of time. The instant of closest approach of the satellite to the

LRV is indicated when the doppler beat goes to zero. This fixes the LRV position

in a plane that is normal to the satellite trajectory and contains the position

o_ the satellite at the instant of closest approach.

An imperfection, a bias, in the doppler radar will cause the wrong instant

of time to be identified as the instant of closest approach. Consequently, the

planar locus of the LRV position will be erroneously shifted along the satellite

trajectory.

The following equations will give the size of the error as a function o_ the

size of the radar bias. From Fig. 6-10 it can be seen that

vx vx

J +x2

If the doppler bias is AR, then the measured range rate, R', will be

./ R 2 + x2
o

The instant of closest approach is indicated when R' is zero. The actual value

of x at the indicated instant of closest approach is the size of the erroneous

shift of the planar locus of position. Thus the size of this error can be

determined by setting the previous equation to zero. Then
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If v >> AR then

o/ A_2
I• = + R (E-II)

X R' = O v2 _ A_ 2

I =+R A_
X {Iv : O 0 V

x is negative before the instant of closest approach and positive after the

instant of closest approach.

In addition to establishing a planar locus of position by measuring the

instant when the doppler beat goes to zero, this scheme also establishes a circu-

lar locus in this plane. The circle is centered about the satellite position at

the indicated instant of closest approach. The radius of the circle, R' is
O'

computed as a function of the second derivative of range measured at the indi-

cated instant of closest approach.

v 2
R' -- (E-12)

o _,l_,=o

However, the bias in the range rate measurement will not change the measured

second derivative of range. So

=v = O ----O

The second derivative of the range can be computed for this constant velocity

satellite from, l_ig, 6_i0.

R 2 = R 2 + x 2

o

2RR = 2xv

RR + _2 = V2

•. v 2 - _2
R=

R

Now (E-12) becomes



R !

o

I •
V 2 R R' -- O

V 2 •
- R'= o

_R 2 AR 2. ] i/2+ o

v 2 - AR 2)

v 2 _ AR 2
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v 2 [RoY ]

(v 2 - AR 2) 3/2

Finally, the error in the computed radius of the circle is e
R"

e =R - R '
R o o

v3

= R i -
O

(v2 _ A 2)3/2

E-3. Sensitivity Equations for Position Fix Using the Angle Between the

Direction to the Satellite and the Local Vertical

^ ^ ^

Fig. 6-13 shows an i, m, n coordinate system.
^

i is in the n RI plane and is perpendicular to n.

triplet.

^

n is the LRV's local vertical.

m completes the right-handed

In Fig. 6-13

Differentiating gives

PI r cos ql
= " r

Also

r cos ql API - rPl sin ql Aql = PI " Ar + r • AP I (E-13)

or

Since R1 will not be changed when the LRV moves,

O = Ar + AP I

A_I : - _
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For small changes in r, Ar is normal to r so that

r _. - -• A =-r • Ar=o
I

Substituting (E-14) into (E-13) gives

r cos ql API - rPl sin ql Aql

or

m

r cos ql API - PI " Ar

Aql = rP I sin ql

From law of cosine of plane trigonometry,

PI2 = RI2 + r 2 _ 2R I r cos81

2P I AP I = 2R I r sin 81 A81

Differentiating gives

or

AP I =

R I r sin81 A81

PI

^

A81 = r

For small changes in r

^

_i can be resolved along _ and n.
^ ^

PI = PI (sin ql £ + cos ql n)

Substituting (E-17) into (E-16) gives

RI sin81 A7 "

API = P1

(E-14)

(E-15)

(E-16)

(E-17)

(E-18)

(E-19)

Substituting (E-18) and (E-19) into (E-15) gives

Aql =

^

r cos ql RI sin 81 Ar • £

PI
- PI (sin ql _ + cos ql n). Ar

rPI sin ql

h ^

i ) A_ • _ i cot ql Ar • n= ( cot ql sin 81 - r - r2

PI



R1 1
= (p] cot ql sin 81 - r ) A_ •

where

RI i
= (P_Icot ql sin 81 - r ) Ar£

^

Ar" n =o

Similarly

but

so that

^

Ar " £ = Ar£

R 2

Aq2 = (P-_2cot q2 sinB2- i ) Ar •r 2

^ ^

£ = cos m + m sin
2

Aq2 = (_ cot q2 sin 82 - ir ) (cosa Ar£ + sins Arm)

(E-20) and (E-21) can be written in matrix form.

Aq I

Aq 2

I
l

R1 i

p] cot ql sin 81 ---r

, R2 !)
cos:_(_ cot q2 sin 82 - r si_,_(p_22 l)cot q2 sin 82 - r

The inverse relation is

(E-20)

(E-21)

Ar£

Ar m
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Ar£

Ar
m

P{

RI cot ql sin 81

2 cot
- P1

r

r

o

sine(R 2 cot q2 sinB2--_)

Aq I

Aq 2

J RI cos ql sin 81
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E-4. Sensitivity Equations for Position Fix Using Angles BetweenDirections
to a Satellite and a Stellar Direction

First it is necessary to namesomeof the angles in Fig. 6-15.
^

ql is the angle between s and PI"

^

q2 is the angle between s and P2"

^

y is the angle between s and _.

In Fig. 6-15

PI cos ql = _i " s

But

Combing (E-22) and (E-23) gives

PI cos ql = (RI -r) • s

^ ^

= " S -- r • s

Differentiating gives

^

cos ql APt - PI sin ql Aql = - s • Ar

or

Aq I =

^

cos ql API + s • Ar

P1 sin ql

(E-22)

(E-24)

because AR I = o for any displacement of LRV.

In Fig. 6-15

Differentiating produces

or

2 = r 2 + R_ - 2rR I cos BIPI

2PI -API = 2rRl sin BI AB I

rR I sin BI

API = P1 A81
(E-25)
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From Fig. 6-15(b) we see

RI sin BI = aI = PI cos E1

Substituting (E-26) into (E-25) gives

API - r cos E1 ABI

For small changes in BI

ABI = r

But
^

kl = cos _i [ + sin _i m

So

^

i Ar • (cos el £ + sin el m)ASl = r

and

AP I = r cos E 1 AB

^ ^

= cos E 1 (cos al £ + sin _i m)" Ar

= cos E1 cos _i Ar£ + cos E1 sin el Arm
(E-27)

Also ^ ^ ^

s = sin y £ + cos y n

^ ^

^ m

s • Ar = (sin y £ + cos y n)" Ar

= sin _ Ar k (E-28)

Substituting (E-27) and (E-28) into (E-24) gives

cos ql cos E1 (cos al Ar£ + sin _i Arm) + sin y Ar k

Aql = PI sin ql

P1 sin ql
[(cos ql cos E1 cos _i + sin y) Ar k + cos ql cos E 1 sin el Arm]

(E-29)

Similarly

Arm] (E-30)
Aq2 = P2 sin q2 [(cos q2 cos E2 cos _2 + sin y)Ar£ + cos q2 cos E2 sin _2
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(E-29) and (E-30) can be written in matrix form.

AqI

Aq2

i
Plsinql(Siny + cosEI cosqI coseI)

i
(siny + cosE2 cosq2 cose2)P2sinq2

cosE I cosq I sine I

Plsinql

cosE 2 cosq 2 sin_ 2

P2sinq2

Ar k

ar
m

The inverse relation is

]
I

m

-P2sinq2cosElcosqlsine I

P2sinq2(siny+cOSElCOSqlCOS_ I

Aq;

I

IAq_

sin y(cos E2 cos q2 sin _2 - cos E1 cos ql sin _i )
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APPENDIXF

DERIVATIONOFEQUATIONSFORPOSITIONFIX USINGSATELLITEPOSITIONFIX SCHEMES

F-l. Position Fix Equations Using Satellite Range

The geometry for this position fix schemeis shownin Fig. 6-8.

cosines provides the following two expressions for cos 81 and cos 82.

cos 81 =
r 2 + (r + R I) 2 _ q_

2r (r + R I)

cos 82 =

r2+ (r + R2) 2 _ q_

2r (r + R 2)

The law of

The next equations come from the law of cosines of spherical trigonometry

cos 81 = cos (90 - L) cos (90 - L I) + sin (90 - L) sin (90 - L I) cos (I - 1I)

= sin L sin L I + cos L cos L I cos (I - 1I)

cos 82 = cos (90 - L) cos (90 - L 2) + sin (90 - L) sin (90 - L 2) cos (I2 - I)

= sin L sin L 2 + cos L cos L 2 cos (I2 - I)

This pair of equations can be manipulated to produce (F-l) and (F-2)

cos 81 - sin L I sin _II - II = cos -I • - -- (F-l)
cos L I cos L

cos 82 - sin L 2 sin L II - 12 = cos -I cos L 2 cos L (F-2)

Adding (F-I) and (F-2) gives

cos 81 - sin L sin L I -i
+ cos

cos 82 - sin L sin L2-I
12 - 11 = cos

cos L cos L I cos L cos L2
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or

cos (_2 - _i ) :

cos 81 - sin L sin LI

cos L cos L I

cos 82 - sin L sin L 2

cos L cos L 2

2 2
[cosL cOSLl-(COSSl-sinL sinL2)2][co_L 2cosL-i(cos82-sinL sinL2)2]

co_L cosL cosL

Equation (F-3) or (F-4) can be solved for L. Then this value of L can be used in

(F-l) or (F-2) to determine _.

F-2. Position Fix Equations Using Satellite Range Rate

Let the satellite velocity vector at the indicated instant of closest approach

have an angle a with respect to the x axis and have an angle b with respect to the

xy plane. Define a new x'y'z' coordinate system as shown in Fig. 6-11. The y' axis

is parallel to the satellite velocity at the indicated instant of closest approach.

x' : x sin a - y cos a

y' = x cos a cos b + y sin a cos b - z sin b

z' = x cos a sin b + y sin a sin b + z cos b

(F-5)

x : x' sin a + y' cos a cos b + z'

y = -x' cos a + y' sin a cos b + z

z = -y' sin b + z' cos b

sin a cos b

! sin a sin b (F-6)

where xyz are lunar coordinates.

system:

xs = R cos Ls cos %s'

The coordinates of the satellite in xyz-coordinate

_vs = R cos L sin _ , z = R sin L (F-7)S S S S

Here R is the distance from the center of the moon to the satellite.

Combining (F-7) and (F-5) gives the coordinates of the satellite in the

x'y'z' system.



189

X's = - R cos Ls cos _("s + a)

Ys' = R [cos Ls cos b sin (,s + a) - sin Ls sin b]

zs' = R [cos Ls sin b sin (%s + a) + sin Ls cos b]

The LRV is located somewhere on a circle in a plane parallel to the x'z' plane. This

circle is centered about the position of the satellite at the indicated instant of

closest approach. The circle's radius, Ro, is computed from the measured derivative

of range rate. The equations for this circle are

(x' - x') 2 + (z' - z') 2 = R 2
s s o

y! = YS

or

{x' + RcosL s cos(% s +a)}2+{z'-R[cosL sinb sin(%s+a)+sinL cosb]} 2 = R 2 (F-8)
S S O

y' = R [cos Ls cos b sin (%s + a) - sin Ls sin b]

The equation for the lunar surface is

x,2 + y,2 + z,2 = r2

Simultaneous solution of (F-8), (F-9), and (F-10) gives the LRV coordinates

in the x'y'z' system. Then (F-6) can be used to determine the coordinates in the

xyz system. Finally the next equations can be used to compute the LRV's lunar

latitude and longitude.

x = r cos L cos

y = r cos L sin

z = r sin L

F-3. Position Fix Equations Using the Angles Between the LRV to Satellite

Line of Sight and the Local Vertical

The geometry for this scheme is shown in Fig. 6-12. The angles ql and q2

will be assumed to be less than 90 ° since the satellite can be observed only

when it is above the horizon.
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r+R Ir

sin (ql - _i ) sin (180 _'- ql )

sin (q2 - _2 )

r+R 2

sin (180 °- q2 )

r+R I

sin ql

r+R 2

sin q2

-i r

_i = ql - sin (r + RI sin ql )

-- r

_2 = q2 - sin l(r + R2 sin q2 )

From the law of cosine of the Spherical Trigonometry:

cos _i = cos (90 °- LI) cos (90 °- L) + sin (90 °- LI) sin (90 °- L) cos (% - _i )

cos _2 = cos

= sin L I sin L + cos L I cos L cos (_ - hI)

(90 °- L 2 cos (90 °- L) + sin (90 °- L 2) sin (90 °- L) cos (12 - _)

= sin L2 sin L + cos L2 cos L cos ( %2 - %)

or

-i cos _i - sin L I sin L

% - %1 = cos ( cos L I cos L )

-i cos _2 - sin L 2 sin L

_2 - _ = cos (. cos L2 cos L )

(F-II)

(F-12)

Combining (F-If) and (F-12) gives

or

-i cos $i - sin L I sin L _ cos _2 - sin L 2 sin L

%2 - %1 = cos ( cos L I cos L ) + cos ( cos L 2 cos L ) (F-13)

cos #i - sin L I sin L cos _2 - sin L2 sin L

cos (%2 - _i ) = (° cos L I cos L ')(' cos L 2 cos L ") -

(F-14)

2 2 / 2 2 ....
cosL-cosL I cosL-(cos@l-sinLl sinL)2 _cosL2 (cos$2-sinL 2 sinL) 2

2

cosL I cosL 2 cosL



(F-13) or (F-14) can be solved for L.

determine _.
Then (F-If) or (F-12) can be used to
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F-4. Position Fix Equations Using the An_les Betweenthe LPV to Satellite

Line of Sight and/or a Stellar Direction

The geometry for this schemeis shownin Fig. 6-16. The coordinates of SI
and $2, the positions of the satellite at two different times, can be written
from Fig. 6-16.

Coordinates of SI: xI = (r + RI) cos LI cos _i

Yl = (r + RI) cos LI sin _i

zI = (r + RI) sin LI

Coordinates of $2: x2 = (r + R2) cos L2 cos _2

Y2 = (r + R2) cos L2 sin %2

z2 = (r + R2) sin L2

Fig. 6-16 also shows an x'y'z' coordinate system. The _' axis is along the
stellar direction.

x' = x sin _ - y cos %
s S

y' = x cos _ sin L + y sin _ sin L - z cos L (F-15)
S S S S S

z' = x cos _ cos L + y sin _ cos L + z sin L
S S S S S

x = x' sin _ + y' sin L cos _ + z' cos L cos%
S S S S S

y = -x' cos _ + y' sin L sin _ + z' cos L sinl (F-16)
S S S S S

z = -y' cos L + z' sin L
S S

The coordinates of SI and S 2 in the x'y'z' system are as follows.

of SI:

x_ = (r + RI) cos LI sin (As - hi)

Coordinates



192

Yl (r + Rl)[cos LI sin Ls cos (As - kl) + sin LI cos Ls]

zi = (r + Rl)[cos LI cos Ls cos (As - hi) + sin LI sin Ls]

Coordinates of $2:

x_ = (r + R2) cos L 2 sin (As - k2)

y_ = (r + R2)[cos L 2 sin L cos (As - k2) - sin L 2 cos L ]s S

W _ m

z2 (r + R2)[cos L 2 cos L cos (%s k2) + sin L 2 sin L ]s s

The following equations describe two cones with vertices at SI and S2 and

axes aleng the stellar directions. The LRV is at the mutual intersection of

these cones and the lunar surface.

(x' - x_) 2 + (y'- y_)2 = (z' - z_) 2 tan2ql

(x' - x_) 2 + (y' - y_)2 = (z' - z_) 2 tan2q2

'=r

{x' - (r+Rl)COSL l sin(ks-kl)}2+ {y'-(r+Rl)[COSLl sinL s coS(ks-kl)-sinL 1 cosL s]}2

/''I_ 1 "/_
\, _,,.., /

{x' - (r+R2)cosL 2 sin(ks-k2)}2+ {y'-(r+R2)[cosL2 sinL coS(ks-kl)-sinL 2 cosL ]}2S s

={z'-[(r+R2)cosL 2 cosLs c°S(ls-k2) + sinL2 sinLs]}2tan2q2

The next equation describes the lunar surface.

(F-]._)

x,2 + y,2 + z,2 = r2 _(F-19)

":_,_]tnneous solution of (F-17), (F-18), and (F-19) gives the LRV coofdin,tes in

the x'y_z ' system. Then (F-15) will give the coordinates in the xyz s_stem.

Finally the following equations can be used to compute the L_"'s lunar latitude

and longitude.

x = r cos L cos k

y = r cos L sin

z = r sin L
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APPENDIXG

DERIVATIONOFEQUATIONSFORNAVIGATION

USINGUNKNOWNLANDMARKS

G-I. Navigation Using TwoUnknownLandmarks

Referring to Fig. 7-8 and applying the law of sines to triangles AQoQILI
and AQoQIL2 gives

x rI

sin (sI - s ) sin (s + _)o o

x r2

sin (B_ - B ) sin (B^ - o)

Taking the ratio of these two equations gives

sin (81 - 8 ) rI sin (8 - o)o o

sin (sI - So) r2 sin (sO + _)

Substituting o = 180 - YI into this equation,

sin (81 - 8o ) rI sin (8o + ¥i )

sin (sI - So ) r2 sin (_o - Y1 )
(G-l)

Eq. (G-I) can be solved for YI which is the direction of the shortest return path.

K sin s - sin 8

1 = tan-I o o (G-2)K cos s + cos B
o o

where

r2 sin (81 - 8o)
(G-3)

K = rI sin (s I - So)

The navigator must move the LRV a short distance in any direction away from

the present position as shown in Fig. 7-7. Using the law of sines in triangles

AQIQ'LI and AQIQI'L2 of Fig. 7-7 gives
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sin (e' - 8)

D

sin (180 - 6')

rI

- sin 8'

r 1

sin (_' - _) sin (180 - ¢')

D r2

- sin ¢'

r2

Dividing the first equation by the second,

Therefore,

sin (e' - 8) r2 sin 8'

sin (¢' - ¢) = r I sin _'

r2 sin _' sin (e' - 8)

rI sin e' sin (¢' - ¢)

Similarly

r2
!

rI

Combining (G-3) and (G-4) gives

sin _ sin (8' - e)

sin 8 sin (_' - ¢)

(G-4)

(G-5)

sin _' sin (8' - 8) sin (81 - 6o)

K = sin 8' sin (¢' - ¢) sin (el - eo ) (G-6)

Eq. (G-6) was

-I

YI = tan

Ks in e - sin 8
o o

Kcos e + cos B
o o

These are the two equations needed for navigation using two unknown landmarks.

G-2. Navigation Using Three Unknown Landmarks

Referring to Fig. 7-9 and applying the law of sine to triangles AQoQILI,
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AQoQI,L2, and AQoQIL3 gives

x

sin PI sin YI
(G-7)

x

sin P
2

K2R I

sin (YI - _I )
(G-8)

But,

sin P3

KiR I
=

sin (YI - el - 81)

Pl = YI - Yo - 180°

(G-9)

P2 = 180 - e + Y - YI + eo o 1

P3 = 180 - eo - Bo + Yo - YI + el + Bl

so (G-7), (G-8), and (G-9) become

x

sin (YI - Yo )

R I

sin Yl
(G-10)

K2R Ix

sin (YI - Yo - el - So) sin (YI - el)

(G-II)

sin (YI - Yo - Bl - Bo - el - So)

K3R I
=

sin (YI - el - 81)

• (G-12)

Dividing (G-10) first by (G-If) and then by (G-12), and rearranging terms, yields

i

cos (eI - So) - q (cose I - coty I cosel) = cot (YI - Yo ) sin (eI - 8o)

cos (eI e + 81 8o ) I
- o - - q [cos (eI + 81) - cot YI sin (eI + Bl) ]

(G-13)

= cot (YI - Yo ) sin (eI - e + 81 - 8 ) (G-14)o o
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By dividing (G-13) by (G-14) the factor cos (YI - Yo ) is eliminated and the

result can be solved for YI' the angle for straight line return.

-i
YI = tan

K 2 sin A sin B - K 3 sin _i sin C

where

K 2 sin B(cos A - K 3 cos C) + K 3 sin C (K 2 cosB - cos _i )

A = _i + _i

B = _i - ao

C = el± - _ + 81 - 8O O

(G-15)

R 2

K2 = RI

R 3

K3 = RI
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I. ARITHMATIC MEAN

DIMFNSION ALF(IO),AX(IO),AY(IO) ,X(IO),Y(IO),TAN(IO)
PRINT 103

I03 FORMAT(IH1,9X,IOHINPUT DATA///)
D0.201 I=I,10
READ 202,X(1),Y(1),ALF(1)

202 FORN_AT(2F6. I ,F9.4 )
ALF(I)=ALF(I)I57.3
B=ALF( I )
TAN( I )=SIN(B)/COS(B)

201 PRINT 204,X{I),Y(I),ALF(1),TAN([)
204 _ORMAT(4X,PF7.1,4X,F15.8,4X,F15.8/)

PRiN_ 22O

220 FORMAT(IHI,qX,6HOUTPUT///)

TX=O. 0

TY=O. 0

M=O

N=I

205 M=M+I

N=N+I

IF(M.FQ.]O) GO TO 206

,.J,a _7_07 I=N,'" Iu

OF=IAN|MI-TAN(I)

TR=Y(II-Xil)*TAN(I)

TS=Y(M)-X( M)*TAN(M)

AX( I )={ TR-T S)/DE

AY(1)=(TR*TAN(M)-TS*TAN(1))/DE

TX= TX+AX(I)

TY=TY+AY( I )

207 PRINT 209,X(1),Y(I),AX(1),AY(I)

200 FORMAT{ 4X, 2F7. i ,4X,EIS. 8,4X,EIS. 8/)

GO TO 205

206 AMX=TX/45.0

AMY=TY/45.0

PRINT 208,AMX,AMY

208 FORMAT( lOX,F 15.8,4X,EI5.8)

CALL EXIT

END
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2. LEAST SQUARE SOLUTION ERROR REGRESSION

DIMENSION A{IO,21,R(2,2),C(2,10)

DIMENSION T(2,10) ,B(IO,I) ,Z| 2,1)

DIMFNSION X| 10) ,Y(I0) ,ALPH( IO_ ,AE|2,2|, AI (2,2)

DO 4 I=l,lO

2 READ 3,X(1),Y{I),ALPH{I)

3 FORMAT(2F6. I,F9.4|

A(I,I}=I.O

A( 1,2)=-TAN(ALPH( I )'_3.142/180.0!

4 B( I, I)=Y( I)-X( I )_TAN(ALPH( I )'_3. 142/180.0)

PRINT 6,IX(1) ,Y(I t ,ALPH|I),A( I,I},A( 1,2|,B( I, I|, I=l, I0

6 FORMAT (IHO,6EI6.9|

DO 20 I=I,2

DO 20 J=1,10

20 C(I,J)=A(J,I)

DO 21 I=1,2

DO 21 J=l,2

R(I,J)=O.O

DO 21 K=I,IO

2i R( i ,J )=k( i ,J) ÷C( i ,r<}_-A_ K,J}

DO 22 I=1,2

DO 22 J=I ,2

22 AE(I,J)=R(I,J)

D=AE(I,I)*AEI2,21-AE(I,2)'_AE(2,!)

AI( 1,1)=AE(2,2)/D

AI(1,2)=-AE(1,2)/D

•AI_2,1)=-AEI2,1)/D
All 2,2) =AE( I ,I }/D

F_G 25 i-1,2

DO 23 J=l,lO

T(I,J)=O.O

DO 23 K=I,2

23 T(I ,J) =T( I, J) +AI ( I ,K) '_C(K,J)

I=1

DO 24 J=l,2

Z(J,I)=O.O

DO 24 K=I,IO

24 Z(J, I )=Z(J, I)+T(J,K)#B(K,I)

PRINT 5,(Z|I,1),I=1,2)

5 FORMAT( IHO, 5X,F8.3|

CALL E XI T

END
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3. KALMAN ESTIMATION

33

123

DIMENSION P(2,2),PI(2tS),HTIS,1),HTRI(2,1)

DIMENSION H(L,2),AMI(2,2),HTR(2,1),DCPXY{2,1)

DIMENSION CKD(StI),HP(I,2),HPHTII,1),PHT(2,1)

DIMENSION DEAF( I,I),DLFHD{ 1, I),R(I,I) ,RI (1, I)

DIMENSION HTRIH(2,2),AM(2,2),CK(2,1),HDII,1I

DIMENSION PR(2,1),PBHP(2,2),BM(1,I),BMI(1,1)

DIMENSION L(2),M(2),PA{2,2),AE(2,2)

READ It XI ,Y1, XS,Y2tALFI ,ALF I(

I FORMAT(4F6.1,2F9.4)

ALF I=ALF I/57.3

ALFS=ALF I I/57.3

TANI=SIN( ALF1 |/COS(ALFI)

TANS=SIN( ALF2 )/COS(ALF2)

PRINT 68, TAN1,TAN2

68 FORMAT| IHI, 3X,E 15.8,4X,EIS. 8/)

DEN=TAN1-TAN2

TRI=Y?-XS*TAN2

TR 2=Y1- X1 X'TAN 1

CF'X2= [ _R I-TK2 _iut_

CPYS=( TR I_TAN1-TR ?_TANS)/DEN

PRINT 2,CPXS,CPY?

? FORMAT( 4X, E 15.8,4X,E15.8/)

A=({XS-XI)_TANS-{Y2-YI))/{DEN#COS(ALF1))_2

B=({Y2-Y1)-{X2-XI)_TANI)/(DEN,_COS{ALFS)J_w_2

AP=(( X2-XI),_TANS-{ YS-YI)) WXTANS/(DEN._COS (ALF1) )_#2

BP-{ ( YS-Y 1)-( XS-X1 )_TANI ) _TANI/( DENw_COS { ALFS) )_,_2

P ( I, 1 )=0. Ol wk(A'_2+B_2 )

P{ 1,2}-0. "" _-i

P(2,I)=P{ 1,2|

P (_, 2) =0.01x'(APX_2+BP,_2)

PA( I, I)=P( I ,1 )

PA(I,2)=P(I,2]

PA( 2, l)=P( 2,1 )

PA(2,2)=P(2,2)

DI=PA { 1,1 )_XPA (2,2)-PA (I ,2 )_PA(2, i )

IF(OI.EO.O.O) GO TO 45

PI(1,1)=PA(2,2)/DI

PI(1,2)=-PA{ 1,2)/DI

PIt2,1)=-PA(2,1)/DI

PI ( 2, 2) =PA(1,1)/DI

DO 33 J=I,2

PRINT 123,PI(J,l),PI(J,S)

FORMAT{ 4X, 2El 5.8)

DO I1 I=1,2

11 PRINT 3,P(I,I),P{I,2)

3 FORMAT( 4X,2EI 5.8)

R(I,I)=O. Ol

RI( I, I)=I .O/R (I ,I)
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DCPXY(I, I) =0.0
DCPXY(2, I ) =0.0

88 READ4, X,Y,ALFME,K
4 FORMAT{ 2F6. I, FC).4, I I)

IF{K. EQ.9) GO TO 99
ALFM=ALFME/57.3
AY=Y-CPY2
A X= X'CP X2

AEFC=ATAN2(AY,AX)

PRINT 22, AX,AY,ALFC

22 FORMAT( IHI, 3X,3EI 5.8/)

IF(ALFME.GT.180.O) ALFM=(-BOO.O+ALFME)/S7.3

DALF=ALFM-ALFC

DIFD=(ALFM-ALFC) w_57.3

PRINT 58,DALF,DIFD

58 FORMAT{ 4X, E 15.8,2XtE15.8/)

SMLR=SQR T( A X_2 +A Y'_Xc2)

HI i, If=SIN( ALFC )/SMLR

H(I,2)=-COS(ALFC)/SMLR

HT(I,1)=H(1,I)

HT( 2, I)=H{ I ,2)

DO 81 l=i,Z

81 HTR I( I, I) =HT( I, I) '_RI (I,I)

HTRIH( 1, I)=HTRI (I, I) _H( I ,I)

HTRIH{ I ,2)=HTRI (I, I) ,WH( I ,2)

HTR IH (2, I )=HTRI (2,1) '_H| [ ,I)

HTR IH(2,2) =HTRI {2,1) _'H( I ,2)

DO 82 I=I,2

DO 82 J=1,2

82 AM(I,J)=PI{ I,J)+HTRIHII,J)

uu '-) l=l,/
DO g J=1,2

9 AE( I,J)=AM{ I,J)

D2=AE{ 1,1)'WAE {2,2)-AE| I ,2) _AE{2,1)

IF(D2.EQ.0.O) GO TO 47

AMI (1,1) =AE(2,2)/D2

AMI (1,2)=-AE( 1,2]/D2

AM{ {2,1 )=-AE( 2, I]/D2

AMI (2,2)=AE( I ,I)/D2

PRINT &4,HTRIH{I,I),HTRIH{I,2],AMI{1,1),AMI{1,2)

64 FORMAT(4X, EI5.B,2X,E 15.8,2XtElS. 8,2X,EI5.8/)

PRINT 66,HTRIH{2,1),HTRIH{2,2],AMI|2,I),AMI{2,2)

66 FORMAT(4X, EIS.8,2X,E I5.8,2X,EIS. 8,2X, EI5.8//)

DO 83 I =I ,2

8B HTR{ I, I )=HT{ I , I) '_RI ( 1 ,I )

DO 84 I=I,2

84 CK( I, I) =AM{ { I, I)'_'HTR [1,1 )+AMI {I ,2]'_HTR( 2, I)

HD( 1, I)=H{ I ,i )*DCPXY{I ,I )+H| I ,2) '_DCPXY(2, I)

DLFHD{ I, I )=DALF-HD( 1 ,I)

00 85 I=I,2

85 CKD{I,I):CK(I,I)_DLFHD(I,I)
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DO 86 I:l ,2
86 DCPXY(I,I)=CKD(I,II÷DCPXY(I,I)

HP(I,I):HII,I)*P(I,I)÷H(1,2)*P(2,1)
HP( I, 2) :H( I ,I )'_P( I, 2) +H( I ,2) mP[2,2)
HPHT(1,1)=HP(1,1)'_HT(I,I)+HP(I,2)W_HT[2,1)
BM(I, 1)=R ( I, 1)+HPHT[ I ,1 D
BMI (1,1) =1. O/BM[ I,I)
PHT( I, 1]=P( 1, I )'_HT(I, l)*P( 1,2 J'_HT(2, I)
PHT(2, I)=P( 2, i } _HT[ I,I ) ÷P(2,2) W_HT(2,I)
DO 89 I =I ,2

89 PB( I, I)=PHT( I, 1) '_BMI(I,I)
PBHP(I, 1] =PB( I, i ) mHP(I, I)
PBHP(I,2)=PB(I,I)mHP(I,2)
PBHP(2, I)=PB( 2,1 } '_HP(i ,I )
PBHP(2,2)=PB( 2,1 ) W_HP(I ,2)
DO 19 I=I,2

DO 19 J=l ,2

19 P(I,J):P(I,J)-PBHPII,J)

PRINT 5,DCPXY( I, I) ,DCPXY (2,1)

5 FORMAT(4X, El5.8,2X,EI5.8/)

PRINT 44,P(I,I),P[I,2)

44 FOR_4AT{ 4X, E 15.8, ZX,_ 15. g,,

PRINT 29,P(2,1),P(2,2)

29 FORMAT( 4X,E 15.8,2X,EI5.8///)

GO TO 88

45 PRINT 39

39 FORMAT(2OX,21Hr):o Pl CANNOT PERFORM)

GO TO 99

47 PRINT 49

49 FORMAT(20X,22HD=O AM) CANNOT PERFORM)

..... I., 7,"

77 FORMAT[IHI,2OHEND OF JOB THANK YOU)

CALL EXIT

END

FORM OF INPUT DATA XI,YI,X2,Y2,ALFI,ALFII

2.0 1.0 4.0 -2.0 26.7047 -26.5795

FORM OF INPUT DATA X( K) ,Y{ K) ,ALFME( K) ,K

-2.0 8.0 I03. 8340

-5.0 -2.0 202. 0022

6.0 8. O 53. 1393

2.0 5.0 68.2511

-6.0 6.0 135.0673

5.0 -6.0 -50. 3190

-6.0 -IO.O 230.1266

-5.0 1.0 I68.6730

9
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INPUT DATA

LANDMARKPOSITION L1 X = 2.0
L2 X = 4.0
L3 X =-2.0
L4 X =-5.0
L5 X = 6.0

L6 X = 2.0

L7 X =-6.0

L8 X = 5.0

Lq X =-6.0

LIO X = -5.0

Y = 1.0 (KILOMETERS)

Y=-2.0

Y = 8.0

Y=-2.0

Y = 8.0

Y = 5,0

Y = 6.0

Y = -6.0

Y : -I0.0

Y= 1.0

MEASURED ANGLE ALPHA Ol =

02 =

1 =

2 =

3 =

4 =

5 :

C, -

7 =

8 =

26.7047 (DEGREES)

-26.5795

103.8340

202.0022

53.1393

68.2511

135.0673

239.1266
168.6730

RESULTS

ACTUAL POSITION X = 0.0 Y = 0.0

ESTIMATED POSITION BY

I. ARITHMETIC MEAN X = 0.00215 Y = 0,00532

2. LEAST SQUARE SOLUTION REGRESSION

X = -0.015 Y = -0.001

3. KALMAN ESTIMATION

INITIAL ESTIMATION X =

SEQUENTIAL ESTIMATION

LI X = -0.00447

L2 X = -0.00648

L3 X = -0.00582

L4 X = -0.00152

L5 X : 0.00170

L6 X = 0.00687

L7 X = 0.00323

L8 X = 0.00183

0.00708 Y : -0.00245

Y : -0.00638

Y = -0.00364

Y = -0.00354

Y = -0.00256

Y = -0.00119

Y : 0.00093

Y = 0.00026

Y : -0.00061
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